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HPy provides a new API for extending Python in C.

The official Python/C API is specific to the current implementation of CPython: it exposes a lot of internal details
which makes it hard:

• to implement it for other Python implementations (e.g. PyPy, GraalPython, Jython, IronPython, etc.)

• to experiment with new things inside CPython itself: e.g. using a GC instead of refcounting, or to remove the
GIL.

There are several advantages to write your C extension in HPy:

• it runs much faster on PyPy, and at native speed on CPython

• it is possible to compile a single binary which runs unmodified on all supported Python implementations and
versions

• it is simpler and more manageable than the Python/C API

• it provides an improved debugging experience: in “debug mode”, HPy actively checks for many common mis-
takes such as reference leaks and invalid usage of objects after they have been deleted. It is possible to turn the
“debug mode” on at startup time, without needing to recompile Python or the extension itself

CONTENTS 1
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CHAPTER

ONE

HPY OVERVIEW

1.1 Motivation and goals

The biggest quality of the Python ecosystem is to have a huge number of high quality libraries for all kind of jobs.
Many of them, especially in the scientific community, are written in C and exposed to Python using the Python/C
API. However, the Python/C API exposes a number of CPython’s implementation details and low-level data structure
layouts. This has two important consequences:

1. any alternative implementation which wants to support C extensions needs to either follow the same low-level
layout or to provide a compatibility layer.

2. CPython developers cannot experiment with new designs or refactoring without breaking compatibility with
existing extensions.

Over the years, it has become evident that emulating the Python/C API in an efficient way is challenging, if not
impossible. The main goal of HPy is provide a C API which is possible to implement in an efficient way on a
number of very diverse implementations. The following is a list of sub-goals.

Performance on CPython HPy is usable on CPython from day 1 with no performance impact compared to the exist-
ing Python/C API.

Incremental adoption It is possible to port existing C extensions piece by piece and to use the old and the new API
side-by-side during the transition.

Easy migration It should be easy to migrate existing C extensions to HPy. Thanks to an appropriate and regular
naming convention it should be obvious what the HPy equivalent of any existing Python/C API is. When a
perfect replacement does not exist, the documentation explains what the alternative options are.

Better debugging In debug mode, you get early and precise errors and warnings when you make some specific kind
of mistakes and/or violate the API rules and assumptions. For example, you get an error if you try to use a
handle (see Handles) which has already been closed. It is possible to turn on the debug mode at startup time,
without needing to recompile.

Hide internal details The API is designed to allow a lot of flexibility for Python implementations, allowing the
possibility to explore different choices to the ones used by CPython. In particular, reference counting is not
part of the API: we want a more generic way of managing resources which is possible to implement with
different strategies, including the existing reference counting and/or with a moving Garbage Collector (like the
ones used by PyPy, GraalPython or Java, for example).

Moreover, we want to avoid exposing internal details of a specific implementation, so that each implementation
can experiment with new memory layout of objects, add optimizations, etc.

Simplicity The HPy API aims to be smaller and easier to study/use/manage than the existing Python/C API. Some-
times there is a trade-off between this goal and the others above, in particular Performance on CPython and
Easy migration. The general approach is to have an API which is “as simple as possible” while not violating the
other goals.

3
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Universal binaries It is possible to compile extensions to a single binary which is ABI-compatible across multiple
Python versions and/or multiple implementation. See Target ABIs.

Opt-in low level data structures Internal details might still be available, but in a opt-in way: for example, if Cython
wants to iterate over a list of integers, it can ask if the implementation provides a direct low-level access to the
content (e.g. in the form of a int64_t[] array) and use that. But at the same time, be ready to handle the
generic fallback case.

1.2 API vs ABI

HPy defines both an API and an ABI. Before digging further into details, let’s distinguish them:

• The API works at the level of source code: it is the set of functions, macros, types and structs which developers
can use to write their own extension modules. For C programs, the API is generally made available through one
or more header files (*.h).

• The ABI works at the level of compiled code: it is the interface between the host interpreter and the compiled
DLL. Given a target CPU and operating system it defines things like the set of exported symbols, the precise
memory layout of objects, the size of types, etc.

In general it is possible to compile the same source into multiple compiled libraries, each one targeting a different
ABI. PEP 3149 states that the filename of the compiled extension should contain the ABI tag to specify what the
target ABI is. For example, if you compile an extension called simple.c on CPython 3.7, you get a DLL called
simple.cpython-37m-x86_64-linux-gnu.so:

• cpython-37m is the ABI tag, in this case CPython 3.7

• x86_64 is the CPU architecture

• linux-gnu is the operating system

The same source code compiled on PyPy3.6 7.2.0 results in a file called simple.
pypy3-72-x86_64-linux-gnu.so:

• pypy3-72 is the ABI tag, in this case “PyPy3.x”, version “7.2.x”

The HPy C API is exposed to the user by including hpy.h and it is explained in its own section of the documentation.

1.3 Target ABIs

Depending on the compilation options, and HPy extension can target three different ABIs:

CPython ABI In this mode, HPy is implemented as a set of C macros and static inline functions which trans-
late the HPy API into the CPython API at compile time. The result is a compiled extension which is indistin-
guishable from a “normal” one and can be distributed using all the standard tools and will run at the very same
speed. The ABI tag is defined by the version of CPython which is used to compile it (e.g., cpython-37m),

HPy Universal ABI As the name suggests, the HPy Universal ABI is designed to be loaded and executed by a variety
of different Python implementations. Compiled extensions can be loaded unmodified on all the interpreters
which supports it. PyPy supports it natively. CPython supports it by using the hpy.universal package, and
there is a small speed penalty compared to the CPython ABI. The ABI tag has not been formally defined yet,
but it will be something like hpy-1, where 1 is the version of the API.

HPy Hybrid ABI To allow an incremental transition to HPy, it is possible to use both HPy and Python/C API calls
in the same extension. In this case, it is not possible to target the Universal ABI because the resulting compiled
library also needs to be compatible with a specific CPython version. The ABI tag will be something like
hpy-1_cpython-37m.

4 Chapter 1. HPy overview
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Moreover, each alternative Python implementation could decide to implement its own non-universal ABI if it makes
sense for them. For example, a hypotetical project DummyPython could decide to ship its own hpy.h which imple-
ments the HPy API but generates a DLL which targets the DummyPython ABI.

This means that to compile an extension for CPython, you can choose whether to target the CPython ABI or the
Universal ABI. The advantage of the former is that it runs at native speed, while the advantage of the latter is that
you can distribute a single binary, although with a small speed penalty on CPython. Obviously, nothing stops you
compiling and distributing both versions: this is very similar to what most projects are already doing, since they
automatically compile and distribute extensions for many different CPython versions.

From the user point of view, extensions compiled for the CPython ABI can be distributed and installed as usual,
while those compiled for the HPy Universal or HPy Hybrid ABIs require installing the hpy.universal package
on CPython.

1.4 C extensions

If you are writing a Python extension in C, you are a consumer of the HPy API. There are three big advantages in
using HPy instead of the old Python/C API:

• Speed on PyPy, GraalPython and other alternative implementations: according to early Early benchmarks, an
extension written in HPy can be ~3x faster than the equivalent extension written in Python/C.

• Improved debugging: when you load extensions in Debug Mode, many common mistakes are checked and
reported automatically.

• Universal binaries: you can choose to distribute only Universal ABI binaries. This comes with a small speed
penalty on CPython, but for non-performance critical libraries it might still be a good tradeoff.

1.5 Cython extensions

If you use Cython, you can’t use HPy directly. The plan is to write a Cython backend which emits HPy code instead
of Python/C code: once this is done, you will get the benefits of HPy automatically.

1.6 Extensions in other languages

On the API side, HPy is designed with C in mind, so it is not directly useful if you want to write an extension in a
language other than C.

However, Python bindings for other languages could decide to target the HPy Universal ABI instead of the CPython
ABI, and generate extensions which can be loaded seamlessly on all Python implementations which supports it. This
is the route taken, for example, by Rust.

1.4. C extensions 5
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1.7 Benefits for alternative Python implementations

If you are writing an alternative Python implementation, there is a good chance that you already know how painful it
is to support the Python/C API. HPy is designed to be both faster and easier to implement!

You have two choices:

• support the Universal ABI: in this case, you just need to export the needed functions and to add a hook to
dlopen() the desired libraries

• use a custom ABI: in this case, you have to write your own replacement for hpy.h and recompile the C
extensions with it.

1.8 Current status and roadmap

HPy is still in the early stages of development, but many big pieces are already in place. As on April 2021, the
following milestones have been reached:

• one can write extensions which expose module-level functions, with all the various kinds of calling conventions.

• there is support for argument parsing (i.e. the equivalents of PyArg_ParseTuple and
PyArg_ParseTupleAndKeywords).

• one can implement custom types.

• there is support for raising and catching exceptions.

• debug mode has been implemented and can be activated at run-time without recompiling. It can detect leaked
handles or handles used after being closed.

• wheels can be build for HPy extensions with python setup.py bdist_wheel and can be installed with pip install.

• it is possible to choose between the CPython ABI and the HPy Universal ABI when compiling an extension
module.

• extensions compiled with the CPython ABI work out of the box on CPython.

• it is possible to load HPy Universal extensions on CPython, thanks to the hpy.universal package.

• it is possible to load HPy Universal extensions on PyPy (using the PyPy hpy branch).

• it is possible to load HPy Universal extensions on GraalPython.

However, there is still a long road before HPy is usable for the general public. In particular, the following features are
on our roadmap but have not been implemented yet:

• many of the original Python/C functions have not been ported to HPy yet. Porting most of them is straighfor-
ward, so for now the priority is to work on the “hard” features to prove that the HPy approach works, and we
will port new functions as needed

• handles are intended to be short-lived, but sometimes one needs a long-lived reference to a Python object. In
HPy, we call this long-lived reference an HPyField, but we still need to implement it. We also need HPy_Store
and HPy_Load to save and load these fields. This will allow alternative implementations to use a moving GC.

• add C-level module state. Often an extension needs module state that is accessible from C (e.g. if a module
implements a new type ArrayType, many of the module methods written in C may need access to ArrayType)
but HPy does not have convenient support for this yet.

• improve the debug mode so that it returns a C traceback showing where a handle was leaked or a closed handle
was used.

6 Chapter 1. HPy overview
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• there is no integration with Cython. The medium-term plan is to extend Cython to automatically generate
HPy-compatible C code.

1.9 Early benchmarks

To validate our approach, we ported a simple yet performance critical module to HPy. We chose ultrajson because it
is simple enough to require porting only a handful of API functions, but at the same time it is performance critical and
performs many API calls during the parsing of a JSON file.

This blog post explains the results in more detail, but they can be summarized as follows:

• ujson-hpy compiled with the CPython ABI is as fast as the original ujson.

• A bit surprisingly, ujson-hpy compiled with the HPy Universal ABI is only 10% slower on CPython. We
need more evidence than a single benchmark of course, but if the overhead of the HPy Universal ABI is only
10% on CPython, many projects may find it small enough that the benefits of distributing extensions using only
the HPy Universal ABI out weight the performance costs.

• On PyPy, ujson-hpy runs 3x faster than the original ujson. Note the HPy implementation on PyPy is not
fully optimized yet, so we expect even bigger speedups eventually.

1.10 Projects involved

HPy was born during EuroPython 2019, were a small group of people started to discuss the problems of the Python/C
API and how it would be nice to have a way to fix them. Since then, it has gathered the attention and interest of
people who are involved in many projects within the Python ecosystem. The following is a (probably incomplete)
list of projects whose core developers are involved in HPy, in one way or the other. The mere presence in this list
does not mean that the project as a whole endorse or recognize HPy in any way, just that some of the people involved
contributed to the code/design/discussions of HPy:

• PyPy

• CPython

• Cython

• GraalPython

• RustPython

• rust-hpy (fork of the cpython crate)

1.11 Related work

A partial list of alternative implementations which offer a Python/C compatibility layer include:

• PyPy

• Jython

• IronPython

• GraalPython

1.9. Early benchmarks 7
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CHAPTER

TWO

PORTING GUIDE

2.1 PyModule_AddObject

PyModule_AddObject() is replaced with a regular HPy_SetAttr_s(). There is no
HPyModule_AddObject() because it has an unusual refcount behaviour (stealing a reference but only
when it returns 0).

2.2 Py_tp_dealloc

Py_tp_dealloc becomes HPy_tp_destroy. We changed the name a little bit because only “lightweight” de-
structors are supported. Use tp_finalize if you really need to do things with the context or with the handle of the
object.

2.3 Py_tp_methods, Py_tp_members and Py_tp_getset

Py_tp_methods, Py_tp_members and Py_tp_getset are no longer needed. Methods, members and getsets
are specified “flatly” together with the other slots, using the standard mechanism of HPyDef_{METH,MEMBER,
GETSET} and HPyType_Spec.defines.

2.4 PyList_New/PyList_SET_ITEM

PyList_New(5)/PyList_SET_ITEM() becomes:

HPyListBuilder builder = HPyListBuilder_New(ctx, 5);
HPyListBuilder_Set(ctx, builder, 0, h_item0);
...
HPyListBuilder_Append(ctx, builder, h_item5);
...
HPy h_list = HPyListBuilder_Build(ctx, builder);

For lists of (say) integers:

HPyListBuilder_i builder = HPyListBuilder_i_New(ctx, 5);
HPyListBuilder_i_Set(ctx, builder, 0, 42);
...
HPy h_list = HPyListBuilder_i_Build(ctx, builder);

And similar for building tuples or bytes

9
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2.5 PyObject_Call and PyObject_CallObject

Both PyObject_Call and PyObject_CallObject are replaced by HPy_CallTupleDict(callable,
args, kwargs) in which either or both of args and kwargs may be null handles.

PyObject_Call(callable, args, kwargs) becomes:

HPy result = HPy_CallTupleDict(ctx, callable, args, kwargs);

PyObject_CallObject(callable, args) becomes:

HPy result = HPy_CallTupleDict(ctx, callable, args, HPy_NULL);

If args is not a handle to a tuple or kwargs is not a handle to a dictionary, HPy_CallTupleDict will return
HPy_NULL and raise a TypeError. This is different to PyObject_Call and PyObject_CallObject which
may segfault instead.

2.6 Buffers

The buffer API in HPy is implemented using the HPy_buffer struct, which looks very similar to Py_buffer (refer
to the CPython documentation for the meaning of the fields):

typedef struct {
void *buf;
HPy obj;
HPy_ssize_t len;
HPy_ssize_t itemsize;
int readonly;
int ndim;
char *format;
HPy_ssize_t *shape;
HPy_ssize_t *strides;
HPy_ssize_t *suboffsets;
void *internal;

} HPy_buffer;

Buffer slots for HPy types are specified using slots HPy_bf_getbuffer and HPy_bf_releasebuffer
on all supported Python versions, even though the matching PyType_Spec slots, Py_bf_getbuffer and
Py_bf_releasebuffer, are only available starting from CPython 3.9.

10 Chapter 2. Porting guide
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CHAPTER

THREE

HPY API

Warning: HPy is still in the early stages of development and the API may change.

3.1 Handles

The “H” in HPy stands for handle, which is a central concept: handles are used to hold a C reference to Python
objects, and they are represented by the C HPy type. They play the same role as PyObject * in the Python/C API,
albeit with some important differences which are detailed below.

When they are no longer needed, handles must be closed by calling HPy_Close, which plays more or less the
same role as Py_DECREF. Similarly, if you need a new handle for an existing object, you can duplicate it by calling
HPy_Dup, which plays more or less the same role as Py_INCREF.

The concept of handles is certainly not unique to HPy. Other examples include Unix file descriptors, where you have
dup() and close(), and Windows’ HANDLE, where you have DuplicateHandle() and CloseHandle().

3.1.1 Handles vs PyObject *

In the old Python/C API, multiple PyObject * references to the same object are completely equivalent to each other.
Therefore they can be passed to Python/C API functions interchangeably. As a result, Py_INCREF an Py_DECREF
can be called with any reference to an object as long as the total number of calls of incref is equal to the number of
calls of decref at the end of the object lifetime.

Whereas using HPy API, each handle must be closed independently.

Thus, the following perfectly valid piece of Python/C code:

void foo(void)
{

PyObject *x = PyLong_FromLong(42); // implicit INCREF on x
PyObject *y = x;
Py_INCREF(y); // INCREF on y
/* ... */
Py_DECREF(x);
Py_DECREF(x); // two DECREF on x

}

Becomes using HPy API:

11
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void foo(HPyContext *ctx)
{

HPy x = HPyLong_FromLong(ctx, 42);
HPy y = HPy_Dup(ctx, x);
/* ... */
// we need to close x and y independently
HPy_Close(ctx, x);
HPy_Close(ctx, y);

}

Calling any HPy function on a closed handle is an error. Calling HPy_Close() on the same handle twice is an error.
Forgetting to call HPy_Close() on a handle results in a memory leak. When running in Debug Mode, HPy actively
checks that you that you don’t close a handle twice and that you don’t forget to close any.

Note: The debug mode is a good example of how powerful it is to decouple the lifetime of handles and the lifetime
of an objects. If you find a memory leak on CPython, you know that you are missing a Py_DECREF somewhere but
the only way to find the corresponding Py_INCREF is to manually and carefully study the source code. On the other
hand, if you forget to call HPy_Close(), the HPy debug mode is able to tell the precise code location which created
the unclosed handle. Similarly, if you try to operate on a closed handle, it will tell you the precise code locations which
created and closed it.

The other important difference is that Python/C guarantees that multiple references to the same object results in the
very same PyObject * pointer. Thus, it is possible to compare C pointers by equality to check whether they point
to the same object:

void is_same_object(PyObject *x, PyObject *y)
{

return x == y;
}

On the other hand, in HPy, each handle is independent and it is common to have two different handles which point
to the same underlying object, so comparing two handles directly is ill-defined. To prevent this kind of common
error (especially when porting existing code to HPy), the HPy C type is opaque and the C compiler actively forbids
comparisons between them. To check for identity, you can use HPy_Is():

void is_same_object(HPyContext *ctx, HPy x, HPy y)
{

// return x == y; // compilation error!
return HPy_Is(ctx, x, y);

}

Note: The main benefit of the semantics of handles is that it allows implementations to use very different models
of memory management. On CPython, implementing handles is trivial because HPy is basically PyObject * in
disguise, and HPy_Dup() and HPy_Close() are just aliases for Py_INCREF and Py_DECREF.

Unlike CPython, PyPy does not use reference counting for memory management: instead, it uses a moving GC, which
means that the address of an object might change during its lifetime, and this makes it hard to implement semantics
like PyObject *’s where the address is directly exposed to the user. HPy solves this problem: on PyPy, handles are
integers which represent indices into a list, which is itself managed by the GC. When an object moves, the GC fixes
the address in the list, without having to touch all the handles which have been passed to C.

12 Chapter 3. HPy API
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3.2 HPyContext

All HPy function calls take an HPyContext as a first argument, which represents the Python interpreter all the
handles belong to. Strictly speaking, it would be possible to design the HPy API without using HPyContext: after
all, all HPy function calls are ultimately mapped to Python/C function call, where there is no notion of context.

One of the reasons to include HPyContext from the day one is to be future-proof: it is conceivable to use it to hold
the interpreter or the thread state in the future, in particular when there will be support for sub-interpreter. Another
possible usage could be to embed different versions or implementations of Python inside the same process.

Moreover, HPyContext is used by the HPy Universal ABI to contain a sort of virtual function table which is used
by the C extensions to call back into the Python interpreter.

3.3 A simple example

In this section, we will see how to write a simple C extension using HPy. It is assumed that you are already familiar
with the existing Python/C API, so we will underline the similarities and the differences with it.

We want to create a function named myabs which takes a single argument and computes its absolute value:

#include "hpy.h"

HPy_DEF_METH_O(myabs)
static HPy myabs_impl(HPyContext *ctx, HPy self, HPy obj)
{

return HPy_Absolute(ctx, obj);
}

There are a couple of points which are worth noting:

• We use the macro HPy_DEF_METH_O to declare we are going to define a HPy function called myabs, which
uses the METH_O calling convention. As in Python/C, METH_O means that the function receives a single argu-
ment.

• The actual C function which implements myabs is called myabs_impl.

• It receives two arguments of type HPy, which are handles which are guaranteed to be valid: they are automati-
cally closed by the caller, so there is no need to call HPy_Close on them.

• It returns a handle, which has to be closed by the caller.

• HPy_Absolute is the equivalent of PyNumber_Absolute and computes the absolute value of the given
argument.

The HPy_DEF_METH_O macro is needed to maintain compatibility with CPython. In CPython, C functions and
methods have a C signature that is different to the one used by HPy: they don’t receive an HPyContext and their
arguments have the type PyObject * instead of HPy. The macro automatically generates a trampoline function
whose signature is appropriate for CPython and which calls the myabs_impl.

Now, we can define our module:

static HPyMethodDef SimpleMethods[] = {
{"myabs", myabs, HPy_METH_O, "Compute the absolute value of the given argument"},
{NULL, NULL, 0, NULL}

};

static HPyModuleDef moduledef = {

(continues on next page)
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(continued from previous page)

HPyModuleDef_HEAD_INIT,
.m_name = "simple",
.m_doc = "HPy Example",
.m_size = -1,
.m_methods = SimpleMethods

};

This part is very similar to the one you would write in Python/C. Note that we specify myabs (and not myabs_impl)
in the method table, and that we have to indicate the calling convention again. This is a deliberate choice, to minimize
the changes needed to port existing extensions, and to make it easier to support hybrid extensions in which some of
the methods are still written using the Python/C API.

Finally, HPyModuleDef is basically the same as the old PyModuleDef.

3.3.1 Building the module

Let’s write a setup.py to build our extension:

from setuptools import setup, Extension

setup(
name="hpy-example",
hpy_ext_modules=[

Extension('simple', sources=['simple.c']),
],
setup_requires=['hpy.devel'],

)

We can now build the extension by running python setup.py build_ext -i. On CPython, it
will target the CPython ABI by default, so you will end up with a file named e.g. simple.
cpython-37m-x86_64-linux-gnu.so which can be imported directly on CPython with no dependency on
HPy.

To target the HPy Universal ABI instead, it is possible to pass the option --hpy-abi=universal to setup.py.
The following command will produce a file called simple.hpy.so (note that you need to specify --hpy-abi
before build_ext, since it is a global option):

python setup.py --hpy-abi=universal build_ext -i

3.3.2 VARARGS calling convention

If we want to receive more than a single arguments, we need the HPy_METH_VARARGS calling convention. Let’s add
a function add_ints which adds two integers:

HPy_DEF_METH_VARARGS(add_ints)
static HPy add_ints_impl(HPyContext *ctx, HPy self, HPy *args, HPy_ssize_t nargs)
{

long a, b;
if (!HPyArg_Parse(ctx, args, nargs, "ll", &a, &b))

return HPy_NULL;
return HPyLong_FromLong(ctx, a+b);

}

There are a few things to note:
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• The C signature is different than the corresponding Python/C METH_VARARGS: in particular, instead of taking
a PyObject *args, we take an array of HPy and its size. This allows e.g. PyPy to do a call more efficiently,
because you don’t need to create a tuple just to pass the arguments.

• We call HPyArg_Parse to parse the arguments. Contrarily to almost all the other HPy functions, this is not a
thin wrapper around PyArg_ParseTuple because as stated above we don’t have a tuple to pass to it, although
the idea is to mimic its behavior as closely as possible. The parsing logic is implemented from scratch inside
HPy, and as such there might be missing functionality during the early stages of HPy development.

• If an error occurs, we return HPy_NULL: we cannot simply return NULL because HPy is not a pointer type.

Once we have written our function, we can add it to the SimpleMethods[] table, which now becomes:

static HPyMethodDef SimpleMethods[] = {
{"myabs", myabs, HPy_METH_O, "Compute the absolute value of the given argument"},
{"add_ints", add_ints, HPy_METH_VARARGS, "Add two integers"},
{NULL, NULL, 0, NULL}

};

3.3. A simple example 15
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CHAPTER

FOUR

DEBUG MODE

HPy includes a debug mode which includes a lot of useful run-time checks to ensure that C extensions use the API
correctly. The major points of the debug mode are:

1. no special compilation flags are required: it is enough to compile the extension with the Universal ABI.

2. The debug mode can be activated at import time, and it can be activated per-extension.

3. You pay the overhead of the debug mode only if you use it. Extensions loaded without the debug mode run at
full speed.

This is possible because the whole of the HPy API is provided as part of the HPy context, so debug mode can pass in
a special debugging context (that wraps the normal context) without affecting the performance of the regular context
at all.

The debugging context can already check for:

• Leaked handles.

• Handles used after they are closed.

An HPy module may be loaded in debug mode using:

mod = hpy.universal.load(module_name, so_filename, debug=True)

17
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CHAPTER

FIVE

API REFERENCE

5.1 Argument Parsing

Implementation of HPyArg_Parse and HPyArg_ParseKeywords.

HPyArg_Parse parses positional arguments and replaces PyArg_ParseTuple. HPyArg_ParseKeywords parses posi-
tional and keyword arguments and replaces PyArg_ParseTupleAndKeywords.

HPy intends to only support the simpler format string types (numbers, bools) and handles. More complex types (e.g.
buffers) should be retrieved as handles and then processed further as needed.

5.1.1 Supported Formatting Strings

Numbers

b (int) [unsigned char] Convert a nonnegative Python integer to an unsigned tiny int, stored in a C un-
signed char.

B (int) [unsigned char] Convert a Python integer to a tiny int without overflow checking, stored in a C
unsigned char.

h (int) [short int] Convert a Python integer to a C short int.

H (int) [unsigned short int] Convert a Python integer to a C unsigned short int, without overflow check-
ing.

i (int) [int] Convert a Python integer to a plain C int.

I (int) [unsigned int] Convert a Python integer to a C unsigned int, without overflow checking.

l (int) [long int] Convert a Python integer to a C long int.

k (int) [unsigned long] Convert a Python integer to a C unsigned long without overflow checking.

L (int) [long long] Convert a Python integer to a C long long.

K (int) [unsigned long long] Convert a Python integer to a C unsigned long long without overflow
checking.

n (int) [HPy_ssize_t] Convert a Python integer to a C HPy_ssize_t.

f (float) [float] Convert a Python floating point number to a C float.

d (float) [double] Convert a Python floating point number to a C double.

19
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Strings and buffers

These formats allow accessing an object as a contiguous chunk of memory. You don’t have to provide raw storage for
the returned unicode or bytes area.

In general, when a format sets a pointer to a buffer, the pointer is valid only until the corresponding HPy handle is
closed.

s (unicode) [const char*]

Convert a Unicode object to a C pointer to a character string. A pointer to an existing string is stored in the character
pointer variable whose address you pass. The C string is NUL-terminated. The Python string must not contain
embedded null code points; if it does, a ValueError exception is raised. Unicode objects are converted to C strings
using ‘utf-8’ encoding. If this conversion fails, a UnicodeError is raised.

Note: This format does not accept bytes-like objects and is therefore not suitable for filesystem paths.

Handles (Python Objects)

O (object) [HPy] Store a handle pointing to a generic Python object.

When using O with HPyArg_ParseKeywords, an HPyTracker is created and returned via the parameter ht. If
HPyArg_ParseKeywords returns successfully, you must call HPyTracker_Close on ht once the returned handles
are no longer needed. This will close all the handles created during argument parsing. There is no need to call
HPyTracker_Close on failure – the argument parser does this for you.

Miscellaneous

p (bool) [int] Tests the value passed in for truth (a boolean predicate) and converts the result to its equivalent
C true/false integer value. Sets the int to 1 if the expression was true and 0 if it was false. This accepts any valid
Python value. See Truth Value Testing for more information about how Python tests values for truth.

Options

| Indicates that the remaining arguments in the argument list are optional. The C variables corresponding to optional
arguments should be initialized to their default value — when an optional argument is not specified, the contents
of the corresponding C variable is not modified.

$ HPyArg_ParseKeywords() only: Indicates that the remaining arguments in the argument list are keyword-only.
Currently, all keyword-only arguments must also be optional arguments, so | must always be specified before $
in the format string.

: The list of format units ends here; the string after the colon is used as the function name in error messages. : and ;
are mutually exclusive and whichever occurs first takes precedence.

; The list of format units ends here; the string after the semicolon is used as the error message instead of the default
error message. : and ; are mutually exclusive and whichever occurs first takes precedence.
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5.1.2 Argument Parsing API

int HPyArg_Parse(HPyContext *ctx, HPyTracker *ht, HPy *args, HPy_ssize_t nargs, const char *fmt,
...)

Parse positional arguments.

Parameters

• ctx – The execution context.

• ht – An optional pointer to an HPyTracker. If the format string never results in new handles
being created, ht may be NULL. Currently no formatting options to this function require an
HPyTracker.

• args – The array of positional arguments to parse.

• nargs – The number of elements in args.

• fmt – The format string to use to parse the arguments.

• ... – A va_list of references to variables in which to store the parsed arguments. The
number and types of the arguments should match the the format strint, fmt.

Returns 0 on failure, 1 on success.

If a NULL pointer is passed to ht and an HPyTracker is required by the format string, an exception will be raised.

If a pointer is provided to ht, the HPyTracker will always be created and must be closed with HPyTracker_Close
if parsing succeeds (after all handles returned are no longer needed). If parsing fails, this function will close the
HPyTracker automatically.

Examples:

Using HPyArg_Parse without an HPyTracker:

long a, b;
if (!HPyArg_Parse(ctx, NULL, args, nargs, "ll", &a, &b))

return HPy_NULL;
...

Using HPyArg_Parse with an HPyTracker:

long a, b;
HPyTracker ht;
if (!HPyArg_Parse(ctx, &ht, args, nargs, "ll", &a, &b))

return HPy_NULL;
...
HPyTracker_Close(ctx, ht);
...

Note: Currently HPyArg_Parse never requires the use of an HPyTracker. The option exists only to support
releasing temporary storage used by future format string codes (e.g. for character strings).

int HPyArg_ParseKeywords(HPyContext *ctx, HPyTracker *ht, HPy *args, HPy_ssize_t nargs, HPy kw,
const char *fmt, const char *keywords[], ...)

Parse positional and keyword arguments.

Parameters

• ctx – The execution context.
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• ht – An optional pointer to an HPyTracker. If the format string never results in new handles
being created, ht may be NULL. Currently only the O formatting option to this function
requires an HPyTracker.

• args – The array of positional arguments to parse.

• nargs – The number of elements in args.

• kw – A handle to the dictionary of keyword arguments.

• fmt – The format string to use to parse the arguments.

• keywords – An NULL terminated array of argument names. The number of names should
match the format string provided. Positional only arguments should have the name “”
(i.e. the null-terminated empty string). Positional only arguments must preceded all other
arguments.

• ... – A va_list of references to variables in which to store the parsed arguments. The
number and types of the arguments should match the the format strint, fmt.

Returns 0 on failure, 1 on success.

If a NULL pointer is passed to ht and an HPyTracker is required by the format string, an exception will be raised.

If a pointer is provided to ht, the HPyTracker will always be created and must be closed with HPyTracker_Close
if parsing succeeds (after all handles returned are no longer needed). If parsing fails, this function will close the
HPyTracker automatically.

Examples:

Using HPyArg_ParseKeywords without an HPyTracker:

long a, b;
if (!HPyArg_ParseKeywords(ctx, NULL, args, nargs, kw, "ll", &a, &b))

return HPy_NULL;
...

Using HPyArg_ParseKeywords with an HPyTracker:

HPy a, b;
HPyTracker ht;
if (!HPyArg_ParseKeywords(ctx, &ht, args, nargs, kw, "OO", &a, &b))

return HPy_NULL;
...
HPyTracker_Close(ctx, ht);
...

Note: Currently HPyArg_ParseKeywords only requires the use of an HPyTracker when the O format is used.
In future other new format string codes (e.g. for character strings) may also require it.
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5.2 Runtime Helpers

Runtime helper functions.

These are not part of the HPy context or ABI, but are available for HPy extensions to incorporate at compile time.

5.2.1 Runtime Helpers API

int HPyHelpers_AddType(HPyContext *ctx, HPy obj, const char *name, HPyType_Spec *hpyspec,
HPyType_SpecParam *params)

Create a type and add it as an attribute on the given object. The type is created using HPyType_FromSpec. The
object is often a module that the type is being added to.

Parameters

• ctx – The execution context.

• obj – A handle to the object the type is being added to (often a module).

• name – The name of the attribute on the object to assign the type to.

• hpyspec – The type spec to use to create the type.

• params – The type spec parameters to use to create the type.

Returns 0 on failure, 1 on success.

Examples:

Using HPyHelpers_AddType without any HPyType_SpecParam parameters:

if (!HPyHelpers_AddType(ctx, module, "MyType", hpyspec, NULL))
return HPy_NULL;

...

Using HPyHelpers_AddType with HPyType_SpecParam parameters:

HPyType_SpecParam params[] = {
{ HPyType_SpecParam_Base, ctx->h_LongType },
{ 0 }

};

if (!HPyHelpers_AddType(ctx, module, "MyType", hpyspec, params))
return HPy_NULL;

...

5.3 HPy.h

5.3.1 Function marcos

HPyAPI_FUNC
Public API functions which are exposed to the user, e.g. HPy_Add or HPyType_FromSpec. Generally
speaking they are thin shims dispatching to the actual implementation:

• In CPython-ABI mode they directly call the corresponding Py* or HPyAPI_IMPL equivalent, e.g.
PyObject_Add or ctx_Type_FromSpec.
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• In Universal-ABI mode, they always resolve to an indirect call through HPyContext *, i.e.
ctx->ctx_Add(...), which on CPython dispaches to ctx_Add.

HPyAPI_HELPER
These functions are part of the public API but not of the ABI. They are helpers which are meant to be compiled
togeher with every extension. E.g. HPyArg_Parse and HPyHelpers_AddType.

HPyAPI_IMPL
CPython implementations for HPyAPI_FUNC functions. Generally speaking, they are put in ctx_*.c files and
they are prefixed by ctx_.

Some of these functions are needed by the CPython ABI mode, and by CPython’s implementation of
hpy.universal: these can be found in hpy/devel/src/runtime/ctx_*.c, e.g. ctx_Type_FromSpec and
ctx_Tuple_FromArray.

Some other are used ONLY by hpy.universal and can be found in hpy/universal/src/ctx_*.c.
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CHAPTER

SIX

MISC NOTES

6.1 bytes/str building API

We need to design an HPy API to build bytes and str objects. Before making any proposal, it is useful to under-
stand:

1. What is the current API to build strings.

2. What are the constraints for alternative implementations and the problems of the current C API.

3. What are the patterns used to build string objects in the existing extensions.

Some terminology:

• “string” means both bytes and str objects

• “unicode” or “unicode string” indicates str

Note: In this document we are translating PyUnicode_* functions into HPyStr_*. See issue #213 for more
discussion about the naming convention.

Note: The goal of the document is only to describe the current CPython API and its real-world usage. For a discussion
about how to design the equivalent HPy API, see issue #214

6.1.1 Current CPython API

Bytes

There are essentially two ways to build bytes:

1. Copy the content from an existing C buffer:

PyObject* PyBytes_FromString(const char *v);
PyObject* PyBytes_FromStringAndSize(const char *v, Py_ssize_t len);
PyObject* PyBytes_FromFormat(const char *format, ...);

2. Create an uninitialized buffer and fill it manually:

PyObject s = PyBytes_FromStringAndSize(NULL, size);
char *buf = PyBytes_AS_STRING(s);
strcpy(buf, "hello");
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(1) is easy for alternative implementations and we can probably provide an HPy equivalent without changing much,
so we will concentrate on (2): let’s call it “raw-buffer API”.

Unicode

Similarly to bytes, there are several ways to build a str:

PyObject* PyUnicode_FromString(const char *u);
PyObject* PyUnicode_FromStringAndSize(const char *u, Py_ssize_t size);
PyObject* PyUnicode_FromKindAndData(int kind, const void *buffer, Py_ssize_t size);
PyObject* PyUnicode_FromFormat(const char *format, ...);
PyObject* PyUnicode_New(Py_ssize_t size, Py_UCS4 maxchar);

Note: PyUnicode_FromString{,AndSize} take an UTF-8 string in input

The following functions are used to initialize an uninitialized object, but I could not find any usage of them outside
CPython itself, so I think they can be safely ignored for now:

Py_ssize_t PyUnicode_Fill(PyObject *unicode, Py_ssize_t start, Py_ssize_t length, Py_
→˓UCS4 fill_char);
Py_ssize_t PyUnicode_CopyCharacters(PyObject *to, Py_ssize_t to_start, PyObject *from,
→˓ Py_ssize_t from_start, Py_ssize_t how_many);

There are also a bunch of API functions which have been deprecated (see PEP 623 and PEP 624) so we will not take
them into account. The deprecated functions include but are not limited to:

PyUnicode_FromUnicode
PyUnicode_FromStringAndSize(NULL,...) // use PyUnicode_New instead
PyUnicode_AS_UNICODE
PyUnicode_AS_DATA
PyUnicode_READY

Moreover, CPython 3.3+ adopted a flexible string represenation (PEP 393) which means that the underlying buffer of
str objects can be an array of 1-byte, 2-bytes or 4-bytes characters (the so called “kind”).

str objects offer a raw-buffer API, but you need to call the appropriate function depending on the kind, returning
buffers of different types:

typedef uint32_t Py_UCS4;
typedef uint16_t Py_UCS2;
typedef uint8_t Py_UCS1;
Py_UCS1* PyUnicode_1BYTE_DATA(PyObject *o);
Py_UCS2* PyUnicode_2BYTE_DATA(PyObject *o);
Py_UCS4* PyUnicode_4BYTE_DATA(PyObject *o);

Uninitialized unicode objects are created by calling PyUnicode_New(size, maxchar), where maxchar is the
maximum allowed value of a character inside the string, and determines the kind. So, in cases in which maxchar is
known in advance, we can predict at compile time what will be the kind of the string and write code accordingly. E.g.:

// ASCII only --> kind == PyUnicode_1BYTE_KIND
PyObject *s = PyUnicode_New(size, 127);
Py_UCS1 *buf = PyUnicode_1BYTE_DATA(s);
strcpy(buf, "hello");
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Note: CPython distinguishes between PyUnicode_New(size, 127) and PyUnicode_New(size, 255):
in both cases the kind is PyUnicode_1BYTE_KIND, but the former also sets a flag to indicate that the string is
ASCII-only.

There are cases in which you don’t know the kind in advance because you are working on generic data. To solve the
problem in addition to the raw-buffer API, CPython also offers an “Opaque API” to write a char inside an unicode:

int PyUnicode_WriteChar(PyObject *unicode, Py_ssize_t index, Py_UCS4 character)
void PyUnicode_WRITE(int kind, void *data, Py_ssize_t index, Py_UCS4 value)

Note that the character to write is always Py_UCS4, so _WriteChar/_WRITE have logic to do something different
depending on the kind.

Note: _WRITE is a macro, and its implementation contains a switch(kind): I think it is designed with the explicit
goal of allowing the compiler to hoist the switch outside a loop in which we repeatedly call _WRITE. However, it is
worth noting that I could not find any code using it outside CPython itself, so it’s probably something which we don’t
need to care of for HPy.

6.1.2 Raw-buffer vs Opaque API

There are two ways to initialize a non-initialized string object:

• Raw-buffer API: get a C pointer to the memory and fill it directly: PyBytes_AsString,
PyUnicode_1BYTE_DATA, etc.

• Opaque API: call special functions API to fill the content, without accessing the buffer directly: e.g.,
PyUnicode_WriteChar.

From the point of view of the implementation, a completely opaque API gives the most flexibility in terms of how
to implement a builder and/or a string. A good example is PyPy’s str type, which uses UTF-8 as the internal
representation. A completely opaque HPyStrBuilder could allow PyPy to fill directly its internal UTF-8 buffer
(at least in simple cases). On the other hand, a raw-buffer API would force PyPy to store the UCS{1,2,4} bytes in a
temporary buffer and convert them to UTF-8 during the build() phase.

On the other hand, from the point of view of the C programmer it is easier to have direct access the memory. This
allows to:

• use memcpy() to copy data into the buffer

• pass the buffer directly to other C functions which write into it (e.g., read())

• use standard C patterns such as *p++ = ... or similar.

6.1.3 Problems and constraints

bytes and str are objects are immutable: the biggest problem of the current API boils down to the fact that the API
allows to construct objects which are not fully initialized and to mutate them during a not-well-specificed “initialization
phase”.

Problems for alternative implementations:

1. it assumes that the underlying buffer can be mutated. This might not be always the case, e.g. if you want to use
a Java string or an RPython string as the data buffer. This might also lead to unnecessary copies.

2. It makes harder to optimize the code: e.g. a JIT cannot safely assume that a string is actually immutable.
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3. It interacts badly with a moving GC, because we need to ensure that buf doesn’t move.

Introducing a builder solves most of the problems, because it introduces a clear separation between the mutable and
immutable phases.

6.1.4 Real world usage

In this section we analyze the usage of some string building API in real world code, as found in the Top 4000 PyPI
packages.

PyUnicode_New

This is the recommended “modern” way to create str objects but it’s not widely used outside CPython. A simple
grep found only 17 matches in the 4000 packages, although some are in very important packages such as cffi,
markupsafe (1, 2, 3) and simplejson (1, 2).

In all the examples linked above, maxchar is hard-coded and known at compile time.

There are only four usages of PyUnicode_New in which maxchar is actually unknown until runtime, and it is
curious to note that the first three are in runtime libraries used by code generators:

1. mypyc

2. Cython

3. siplib

4. PyICU: this is the only non-runtime library usage of it, and it’s used to implement a routine to create a str
object from an UTF-16 buffer.

For HPy, we should at lest consider the opportunity to design special APIs for the cases in which maxchar is known
in advance, e.g. HPyStrBuilder_ASCII, HPyStrBuilder_UCS1, etc., and evaluate whether this would be
beneficial for alternative implementations.

Create empty strings

A special case is PyUnicode_New(0, 0), which contructs an empty str object. CPython special-cases it to
always return a prebuilt object.

This pattern is used a lot inside CPython but only once in 3rd-party extensions, in the regex library ( 1, 2).

Other ways to build empty strings are PyUnicode_FromString("") which is used 27 times and
PyUnicode_FromStringAndSize("", 0) which is used only once.

For HPy, maybe we should just have a ctx->h_EmptyStr and ctx->h_EmptyBytes?

PyUnicode_From*, PyUnicode_Decode*

Functions of the PyUnicode_From* and PyUnicode_Decode* families should be easy to adapt to HPy, so we
won’t discuss them in detail. However, here is the of matches found by grep for each function, to get an idea of how
much each is used:

PyUnicode_From* family:
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https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top4000/2601-PyICU-2.7.3/common.cpp#L213
https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0119-regex-2021.4.4/regex_3/_regex.c#L19486
https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0119-regex-2021.4.4/regex_3/_regex.c#L19516
https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0268-pyodbc-4.0.30/src/textenc.cpp#L144
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Documented:
964 PyUnicode_FromString
259 PyUnicode_FromFormat
125 PyUnicode_FromStringAndSize
58 PyUnicode_FromWideChar
48 PyUnicode_FromEncodedObject
17 PyUnicode_FromKindAndData
9 PyUnicode_FromFormatV

Undocumented:
7 PyUnicode_FromOrdinal

Deprecated:
66 PyUnicode_FromObject
45 PyUnicode_FromUnicode

PyUnicode_Decode* family:

143 PyUnicode_DecodeFSDefault
114 PyUnicode_DecodeUTF8
99 PyUnicode_Decode
64 PyUnicode_DecodeLatin1
51 PyUnicode_DecodeASCII
12 PyUnicode_DecodeFSDefaultAndSize
10 PyUnicode_DecodeUTF16
8 PyUnicode_DecodeLocale
6 PyUnicode_DecodeRawUnicodeEscape
3 PyUnicode_DecodeUTF8Stateful
2 PyUnicode_DecodeUTF32
2 PyUnicode_DecodeUnicodeEscape

Raw-buffer access

Most of the real world packages use the raw-buffer API to initialize str objects, and very often in a way which can’t
be easily replaced by a fully opaque API.

Example 1, markupsafe: the DO_ESCAPE macro takes a parameter called outp which is obtained by calling
PyUnicode*BYTE_DATA (1BYTE, (2BYTE, (4BYTE). DO_ESCAPE contains code like this, which would be hard
to port to a fully-opaque API:

memcpy(outp, inp-ncopy, sizeof(*outp)*ncopy); \
outp += ncopy; ncopy = 0; \

*outp++ = '&'; \

*outp++ = '#'; \

*outp++ = '3'; \

*outp++ = '4'; \

*outp++ = ';'; \
break; \

Another interesting example is pybase64. After removing the unnecessary stuff, the logic boils down to this:

out_len = (size_t)(((buffer.len + 2) / 3) * 4);
out_object = PyUnicode_New((Py_ssize_t)out_len, 127);
dst = (char*)PyUnicode_1BYTE_DATA(out_object);
...
base64_encode(buffer.buf, buffer.len, dst, &out_len, libbase64_simd_flag);
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https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top100/0024-MarkupSafe-2.0.1/src/markupsafe/_speedups.c#L35
https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top100/0024-MarkupSafe-2.0.1/src/markupsafe/_speedups.c#L112
https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top100/0024-MarkupSafe-2.0.1/src/markupsafe/_speedups.c#L137
https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top100/0024-MarkupSafe-2.0.1/src/markupsafe/_speedups.c#L163
https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top4000/1925-pybase64-1.1.4/pybase64/_pybase64.c#L320-349
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Note that base64_encode is an external C function which writes stuff into a char * buffer, so in this case it is
required to use the raw-buffer API, unless you want to allocate a temporary buffer and copy chars one-by-one later.

There are other examples similar to these, but I think there is already enough evidence that HPy must offer a raw-buffer
API in addition to a fully-opaque one.

Typed vs untyped raw-buffer writing

To initialize a str object using the raw-buffer interface, you need to get a pointer to the buffer. The vast majority of
code uses PyUnicode_{1,2,4}BYTE_DATA to get a buffer of type Py_UCS{1,2,4}* and write directly to it:

PyObject *s = PyUnicode_New(size, 127);
Py_UCS1 *buf = PyUnicode_1BYTE_DATA(s);
buf[0] = 'H';
buf[1] = 'e';
buf[2] = 'l';
...

The other way to get a pointer to the raw-buffer is to call PyUnicode_DATA(), which returns a void *: the only
reasonable way to write something in this buffer is to memcpy() the data from another str buffer of the same kind.
This technique is used for example by CPython’s textio.c.

Outside CPython, the only usage of this technique is inside cython’s helper function __Pyx_PyUnicode_Join.

This probably means that we don’t need to offer untyped raw-buffer writing for HPy. If we really need to support the
memcpy use case, we can probably just offer a special function in the builder API.

PyUnicode_WRITE, PyUnicode_WriteChar

Outside CPython, PyUnicode_WRITE() is used only inside Cython’s helper functions (1, 2). Consider-
ing that Cython will need special support for HPy anyway, this means that we don’t need an equivalent of
PyUnicode_WRITE for HPy.

Similarly, PyUnicode_WriteChar() is used only once, inside JPype.

PyUnicode_Join

All the API functions listed above require the user to know in advance the size of the string: PyUnicode_Join()
is the only native API call which allows to build a string whose size is not known in advance.

Examples of usage are found in simplejson (1, 2), pycairo, regex (1, 2, 3, 4, 5, 6) and others, for a total of 25
grep matches.

Note: Contrarily to its unicode equivalent, PyBytes_Join() does not exist. There is _PyBytes_Join()which
is private and undocumented, but some extensions rely on it anyway: Cython, regex, dulwich.

In theory, alternative implementaions should be able to provide a more efficient way to achieve the goal. E.g. for
pure Python code PyPy offers __pypy__.builders.StringBuilder which is faster than both StringIO
and ''.join, so maybe it might make sense to offer a way to use it from C.
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https://github.com/antocuni/cpython/blob/7b3ab5921fa25ed8b97b6296f97c5c78aacf5447/Modules/_io/textio.c#L344
https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0158-Cython-0.29.23/Cython/Utility/StringTools.c#L857
https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0158-Cython-0.29.23/Cython/Utility/StringTools.c#L865
https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0158-Cython-0.29.23/Cython/Utility/StringTools.c#L914-L926
https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0546-JPype1-1.2.1/native/python/jp_pythontypes.cpp#L196
https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top100/0096-simplejson-3.17.2/simplejson/_speedups.c#L779
https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top100/0096-simplejson-3.17.2/simplejson/_speedups.c#L1033
https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0759-pycairo-1.20.0/cairo/path.c#L156
https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0119-regex-2021.4.4/regex_3/_regex.c#L19492
https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0119-regex-2021.4.4/regex_3/_regex.c#L22674
https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0119-regex-2021.4.4/regex_3/_regex.c#L22768
https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0119-regex-2021.4.4/regex_3/_regex.c#L19440
https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0119-regex-2021.4.4/regex_3/_regex.c#L22495
https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0119-regex-2021.4.4/regex_3/_regex.c#L22589
https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0158-Cython-0.29.23/Cython/Utility/StringTools.c#L795
https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0119-regex-2021.4.4/regex_3/_regex.c#L19501
https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top4000/1424-dulwich-0.20.23/dulwich/_pack.c#L62
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CHANGELOG

7.1 Version 0.0.3 (September 22nd, 2021)

This release adds various new API functions (see below) and extends the debug mode with the ability to track closed
handles. The default ABI mode now is ‘universal’ for non-CPython implementations. Also, the type definition of
HPyContext was changed and it’s no longer a pointer type. The name of the HPy dev package was changed to ‘hpy’
(formerly: ‘hpy.devel’). Macro HPy_CAST was replaced by HPy_AsStruct.

New features:

• Added helper HPyHelpers_AddType for creating new types

• Support format specifier ‘s’ in HPyArg_Parse

• Added API functions: HPy_Is, HPy_AsStructLegacy (for legacy types), HPyBytes_FromStringAndSize,
HPyErr_NewException, HPyErr_NewExceptionWithDoc, HPyUnicode_AsUTF8AndSize, HPyUni-
code_DecodeFSDefault, HPyImport_ImportModule

• Debug mode: Implemented tracking of closed handles

• Debug mode: Add hook for invalid handle access

Bug fixes:

• Distinguish between pure and legacy types

• Fix Sphinx doc errors
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EIGHT

INDICES AND TABLES

• genindex

• modindex

• search
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