

HPy: a better API for Python

HPy provides a new API for extending Python in C.

The official Python/C API [https://docs.python.org/3/c-api/index.html] is
specific to the current implementation of CPython: it exposes a lot of
internal details which makes it hard:

	to implement it for other Python implementations (e.g. PyPy, GraalPython,
Jython, IronPython, etc.)

	to experiment with new things inside CPython itself: e.g. using a GC
instead of refcounting, or to remove the GIL.

There are several advantages to write your C extension in HPy:

	it runs much faster on PyPy, GraalPython, and at native speed on CPython

	it is possible to compile a single binary which runs unmodified on all
supported Python implementations and versions

	it is simpler and more manageable than the Python/C API

	it provides an improved debugging experience: in “debug mode”, HPy
actively checks for many common mistakes such as reference leaks and
invalid usage of objects after they have been deleted. It is possible to
turn the “debug mode” on at startup time, without needing to recompile
Python or the extension itself

	HPy overview
	Motivation and goals

	API vs ABI

	Target ABIs

	Benefits for the Python ecosystem

	Cython extensions

	Extensions in other languages

	Benefits for alternative Python implementations

	Current status and roadmap

	Early benchmarks

	Projects involved

	Related work

	HPy API introduction
	Handles

	HPyContext

	A simple example

	Porting guide
	Porting PyObject * to HPy API constructs

	PyModule_AddObject

	Py_tp_dealloc

	Py_tp_methods, Py_tp_members and Py_tp_getset

	PyList_New/PyList_SET_ITEM

	PyObject_Call and PyObject_CallObject

	Buffers

	Porting Example
	Step 01: Converting the module to a (legacy) HPy module

	Step 02: Transition some methods to HPy

	Step 03: Complete the port to HPy

	Debug Mode
	Activating Debug Mode

	Using Debug Mode

	Example

	API Reference
	HPyField

	HPyGlobal

	Leave/enter Python execution (GIL)

	Argument Parsing

	Building complex Python objects

	Runtime Helpers

	Misc notes
	bytes/str building API

	Changelog
	Version 0.0.4 (May 25th, 2022)

	Version 0.0.3 (September 22nd, 2021)

Indices and tables

	Index

	Module Index

	Search Page

HPy overview

Motivation and goals

The superpower of the Python ecosystem is its libraries, which are
developed by users. Over time, these libraries have grown in number,
quality, and applicability. While it is possible to write python libraries
entirely in python, many of them, especially in the scientific community,
are written in C and exposed to Python using the Python/C API [https://docs.python.org/3/c-api/index.html].
The existence of these C extensions using the Python/C API leads to some issues:

	Usually, alternative implementation of the Python programming language
want to support C extensions. To do so, they must implement the same
Python/C API or provide a compatibility layer.

	CPython developers cannot experiment with new designs or refactoring
without breaking compatibility with existing extensions.

Over the years, it has become evident that emulating the Python/C API in an
efficient way is challenging, if not impossible [https://www.pypy.org/posts/2018/09/inside-cpyext-why-emulating-cpython-c-8083064623681286567.html].
To summarize, it is mainly due to leaking of implementation details of CPython
into the C/API - which makes it difficult to make different design choices than
those made by CPython. As such - the main goal of HPy is to provide a C API
which makes as few assumptions as possible about the design decisions of any
implementation of Python, allowing diverse implementations to support it
efficiently and without compromise. In particular, reference counting is
not part of the API: we want a more generic way of managing resources that
is possible to impelement with different strategies, including the existing
reference counting and/or with a moving Garbage Collector (like the ones
used by PyPy, GraalPython or Java, for example). Moreover, each implementation
can experiment with new memory layout of objects, add optimizations, etc.
The following is a list of sub-goals.

	Performance on CPython
	HPy is usable on CPython from day 1 with no performance impact compared to
the existing Python/C API.

	Incremental adoption
	It is possible to port existing C extensions piece by piece and to use
the old and the new API side-by-side during the transition.

	Easy migration
	It should be easy to migrate existing C extensions to HPy. Thanks to an
appropriate and regular naming convention it should be obvious what the
HPy equivalent of any existing Python/C API is. When a perfect replacement
does not exist, the documentation explains what the alternative options are.

	Better debugging
	In debug mode, you get early and precise errors and warnings when you make
some specific kind of mistakes and/or violate the API rules and
assumptions. For example, you get an error if you try to use a handle
(see Handles) which has already been closed. It is possible to
turn on the debug mode at startup time, without needing to recompile.

	Simplicity
	The HPy API aims to be smaller and easier to study/use/manage than the
existing Python/C API. Sometimes there is a trade-off between this goal and
the others above, in particular Performance on CPython and Easy migration.
The general approach is to have an API which is “as simple as possible” while
not violating the other goals.

	Universal binaries
	It is possible to compile extensions to a single binary which is
ABI-compatible across multiple Python versions and/or multiple
implementation. See Target ABIs.

	Opt-in low level data structures
	Internal details might still be available, but in a opt-in way: for example,
if Cython wants to iterate over a list of integers, it can ask if the
implementation provides a direct low-level access to the content (e.g. in
the form of a int64_t[] array) and use that. But at the same time, be
ready to handle the generic fallback case.

API vs ABI

HPy defines both an API and an ABI. Before digging further into details,
let’s distinguish them:

	The API works at the level of source code: it is the set of functions,
macros, types and structs which developers can use to write their own
extension modules. For C programs, the API is generally made available
through one or more header files (*.h).

	The ABI works at the level of compiled code: it is the interface between
the host interpreter and the compiled DLL. Given a target CPU and
operating system it defines things like the set of exported symbols, the
precise memory layout of objects, the size of types, etc.

In general it is possible to compile the same source into multiple compiled
libraries, each one targeting a different ABI. PEP 3149 [https://www.python.org/dev/peps/pep-3149] states that the
filename of the compiled extension should contain the ABI tag to specify
what the target ABI is. For example, if you compile an extension called
simple.c on CPython 3.7, you get a DLL called
simple.cpython-37m-x86_64-linux-gnu.so:

	cpython-37m is the ABI tag, in this case CPython 3.7

	x86_64 is the CPU architecture

	linux-gnu is the operating system

The same source code compiled on PyPy3.6 7.2.0 results in a file called
simple.pypy3-72-x86_64-linux-gnu.so:

	pypy3-72 is the ABI tag, in this case “PyPy3.x”, version “7.2.x”

The HPy C API is exposed to the user by including hpy.h and it is
explained in its own section of the documentation.

Target ABIs

Depending on the compilation options, an HPy extension can target three
different ABIs:

	CPython ABI
	In this mode, HPy is implemented as a set of C macros and static inline
functions which translate the HPy API into the CPython API at compile
time. The result is a compiled extension which is indistinguishable from a
“normal” one and can be distributed using all the standard tools and will
run at the very same speed. The ABI tag is defined by the version of CPython
which is used to compile it (e.g., cpython-37m).

	HPy Universal ABI
	As the name suggests, the HPy Universal ABI is designed to be loaded and
executed by a variety of different Python implementations. Compiled
extensions can be loaded unmodified on all the interpreters which support
it. PyPy and GraalPython support it natively. CPython supports it by using the
hpy.universal package, and there is a small speed penalty 1 compared to
the CPython ABI. The ABI tag has not been formally defined yet.

	HPy Hybrid ABI
	To allow an incremental transition to HPy, it is possible to use both HPy
and Python/C API calls in the same extension. In this case, it is not
possible to target the Universal ABI because the resulting compiled library
also needs to be compatible with a specific CPython version. The ABI tag
will be something like hpy-1_cpython-37m. Note: the tag is not implemented
yet. Currently, the approach to use HPy in hybrid mode is to build the extension
in HPy universal mode, which, for now, still allows mixing the HPy and CPython APIs.
Extensions mixing the HPy and CPython APIs will not work on Pythons that do not
support the hybrid ABI.

Moreover, each alternative Python implementation could decide to implement its
own non-universal ABI if it makes sense for them. For example, a hypothetical
project DummyPython could decide to ship its own hpy.h which implements
the HPy API but generates a DLL which targets the DummyPython ABI.

This means that to compile an extension for CPython, you can choose whether to
target the CPython ABI or the Universal ABI. The advantage of the former is
that it runs at native speed, while the advantage of the latter is that you
can distribute a single binary, although with a small speed penalty on
CPython. Obviously, nothing stops you compiling and distributing both
versions: this is very similar to what most projects are already doing, since
they automatically compile and distribute extensions for many different
CPython versions.

From the user point of view, extensions compiled for the CPython ABI can be
distributed and installed as usual, while those compiled for the HPy Universal
or HPy Hybrid ABIs require installing the hpy.universal package on
CPython and have no further requirements on Pythons that support HPy natively.

Benefits for the Python ecosystem

The HPy project offers some benefits to the python ecosystem, both to Python
users and to library developers.

	C extensions can achieve much better speed on alternative implementions,
including PyPy and GraalPython: according to early Early benchmarks, an
extension written in HPy can be ~3x faster than the equivalent extension
written in Python/C.

	Improved debugging: when you load extensions in Debug Mode,
many common mistakes are checked and reported automatically.

	Universal binaries: libraries can choose to distribute only Universal ABI
binaries. By doing so, they can support all Python implementations and
version of CPython (like PyPy, GraalPython, CPython 3.10, CPython 3.11, etc)
for which an HPy loader exists, including those that do not yet exist! This
currently comes with a small speed penalty on CPython, but for
non-performance critical libraries it might still be a good tradeoff.

	Python environments: With general availability of universal ABI binaries for
popular packages, users can create equivalent python environments that
target different Python implementations. Thus, Python users can try their
workload against different implementations and pick the one best suited for
their usage.

	In a situation where most or all popular Python extensions target the
universal ABI, it will be more feasible for CPython to make breaking changes
to its C/API for performance or maintainability reasons.

Cython extensions

If you use Cython, you can’t use HPy directly. There is a
work in progress [https://github.com/cython/cython/pull/4490] to
add Cython backend which emits HPy code instead of Python/C code: once this is
done, you will get the benefits of HPy automatically.

Extensions in other languages

On the API side, HPy is designed with C in mind, so it is not directly useful
if you want to write an extension in a language other than C.

However, Python bindings for other languages could decide to target the
HPy Universal ABI instead of the CPython ABI, and generate
extensions which can be loaded seamlessly on all Python implementations which
supports it. This is the route taken, for example, by Rust [https://github.com/pyhandle/rust-hpy].

Benefits for alternative Python implementations

If you are writing an alternative Python implementation, there is a good
chance that you already know how painful it is to support the Python/C API.
HPy is designed to be both faster and easier to implement!

You have two choices:

	support the Universal ABI: in this case, you just need to export the
needed functions and to add a hook to dlopen() the desired libraries

	use a custom ABI: in this case, you have to write your own replacement for
hpy.h and recompile the C extensions with it.

Current status and roadmap

HPy is still in the early stages of development, but many big pieces are
already in place. As on April 2022, the following milestones have been reached:

	some real-world Python packages have been ported to HPy API.
The ports will be published soon.

	one can write extensions which expose module-level functions, with all
the various kinds of calling conventions.

	there is support for argument parsing (i.e., the equivalents of
PyArg_ParseTuple and PyArg_ParseTupleAndKeywords), and a
convenient complex value building (i.e., the equivalent Py_BuildValue).

	one can implement custom types, whose struct may contain references to other
Python objects using HPyField.

	there is a support for globally accessible Python object handles: HPyGlobal,
which can still provide isolation for subinterpreters if needed.

	there is support for raising and catching exceptions.

	debug mode has been implemented and can be activated at run-time without
recompiling. It can detect leaked handles or handles used after
being closed.

	wheels can be build for HPy extensions with python setup.py bdist_wheel
and can be installed with pip install.

	it is possible to choose between the CPython ABI and the
HPy Universal ABI when compiling an extension module.

	extensions compiled with the CPython ABI work out of the box on
CPython.

	it is possible to load HPy Universal extensions on CPython, thanks to the
hpy.universal package.

	it is possible to load HPy Universal extensions on
PyPy (using the PyPy hpy branch [https://foss.heptapod.net/pypy/pypy/tree/branch/hpy]).

	it is possible to load HPy Universal extensions on GraalPython [https://github.com/graalvm/graalpython].

However, there is still a long road before HPy is usable for the general
public. In particular, the following features are on our roadmap but have not
been implemented yet:

	many of the original Python/C functions have not been ported to
HPy yet. Porting most of them is straightforward, so for now the priority
is to test HPy with real-world Python packages and primarily resolve the
“hard” features to prove that the HPy approach works.

	add C-level module state to complement the HPyGlobal approach. While HPyGlobal
is easier to use, it will make the migration simpler for existing extensions that
use CPython module state.

	the integration with Cython is work in progress

	it is not clear yet how to approach pybind11 and similar C++ bindings. They serve two use-cases:

	As C++ wrappers for CPython API. HPy is fundamentally different in some ways, so fully compatible
pybind11 port of this API to HPy does not make sense. There can be a similar or even partially pybind11
compatible C++ wrapper for HPy adhering to the HPy semantics and conventions (e.g., passing the
HPyContext pointer argument around, no reference stealing, etc.).

	Way to expose (or “bind”) mostly pure C++ functions as Python functions where the C++ templating
machinery takes care of the conversion between the Python world, i.e., PyObject*, and the C++
types. Porting this abstraction to HPy is possible and desired in the future. To determine the priority
or such effort, we need to get more knowledge about existing pybind11 use-cases.

Early benchmarks

To validate our approach, we ported a simple yet performance critical module
to HPy. We chose ultrajson [https://github.com/pyhandle/ultrajson-hpy]
because it is simple enough to require porting only a handful of API
functions, but at the same time it is performance critical and performs many
API calls during the parsing of a JSON file.

This blog post [https://www.pypy.org/posts/2019/12/hpy-kick-off-sprint-report-1840829336092490938.html]
explains the results in more detail, but they can be summarized as follows:

	ujson-hpy compiled with the CPython ABI is as fast as the original
ujson.

	A bit surprisingly, ujson-hpy compiled with the HPy Universal ABI is
only 10% slower on CPython. We need more evidence than a single benchmark
of course, but if the overhead of the HPy Universal ABI is only 10% on
CPython, many projects may find it small enough that the benefits
of distributing extensions using only the HPy Universal ABI out weight
the performance costs.

	On PyPy, ujson-hpy runs 3x faster than the original ujson. Note
the HPy implementation on PyPy is not fully optimized yet, so we expect
even bigger speedups eventually.

Projects involved

HPy was born during EuroPython 2019, were a small group of people started to
discuss the problems of the Python/C API and how it would be nice to
have a way to fix them. Since then, it has gathered the attention and interest
of people who are involved in many projects within the Python ecosystem. The
following is a (probably incomplete) list of projects whose core developers
are involved in HPy, in one way or the other. The mere presence in this list
does not mean that the project as a whole endorse or recognize HPy in any way,
just that some of the people involved contributed to the
code/design/discussions of HPy:

	PyPy

	CPython

	Cython

	GraalPython

	RustPython

	rust-hpy (fork of the cpython crate [https://crates.io/crates/cpython])

Related work

A partial list of alternative implementations which offer a Python/C
compatibility layer include:

	PyPy [https://doc.pypy.org/en/latest/faq.html#do-cpython-extension-modules-work-with-pypy]

	Jython [https://www.jyni.org/]

	IronPython [https://github.com/IronLanguages/ironclad]

	GraalPython [https://github.com/graalvm/graalpython]

Footnotes

	1

	The reason for this minor performance penalty is a layer of pointer
indirection. For instance, ctx->HPyLong_FromLong is called from the
CPython extension, which in universal mode simply forwards the call to
PyLong_FromLong. It is technically possible to implement a CPython
universal module loader which edits the program’s executable code at runtime
to replace that call. Note that this is not at all trivial.

HPy API introduction

Warning

HPy is still in the early stages of development and the API may change.

Handles

The “H” in HPy stands for handle, which is a central concept: handles are
used to hold a C reference to Python objects, and they are represented by the
C HPy type. They play the same role as PyObject * in the Python/C
API, albeit with some important differences which are detailed below.

When they are no longer needed, handles must be closed by calling
HPy_Close, which plays more or less the same role as Py_DECREF.
Similarly, if you need a new handle for an existing object, you can duplicate
it by calling HPy_Dup, which plays more or less the same role as
Py_INCREF.

The HPy API strictly follows these rules:

	HPy handles returned by a function are never borrowed, i.e.,
the caller must either close or return it.

	HPy handles passed as function arguments are never stolen;
if you receive a HPy handle argument from your caller, you should never close it.

These rules makes the code simpler to reason about. Moreover, no reference
borrowing enables the Python implementations to use whatever internal
representation they wish. For example, the object returned by HPy_GetItem_i
may be created on demand from some compact internal representation, which does
not need to convert itself to full blown representation in order to hold onto
the borrowed object.

We strongly encourage the users of HPy to also internally follow these rules
for their own internal APIs and helper functions. For the sake of simplicity
and easier local reasoning and also because in the future, code adhering
to those rules may be suitable target for some scalable and precise static
analysis tool.

The concept of handles is certainly not unique to HPy. Other examples include
Unix file descriptors, where you have dup() and close(), and Windows’
HANDLE, where you have DuplicateHandle() and CloseHandle().

Handles vs PyObject *

In order to fully understand the way HPy handles work, it is useful to discuss
the Python/C API Pyobject * pointer. These pointers always
point to the same object, and a python object’s identity is completely given
by its address in memory, and two pointers with the same address can
be passed to Python/C API functions interchangeably. As a result, Py_INCREF
and Py_DECREF can be called with any reference to an object as long as the
total number of calls of incref is equal to the number of calls of decref
at the end of the object lifetime.

Whereas using HPy API, each handle must be closed independently.

Thus, the following perfectly valid piece of Python/C code:

void foo(void)
{
 PyObject *x = PyLong_FromLong(42); // implicit INCREF on x
 PyObject *y = x;
 Py_INCREF(y); // INCREF on y
 /* ... */
 Py_DECREF(x);
 Py_DECREF(x); // two DECREF on x
}

Becomes using HPy API:

void foo(HPyContext *ctx)
{
 HPy x = HPyLong_FromLong(ctx, 42);
 HPy y = HPy_Dup(ctx, x);
 /* ... */
 // we need to close x and y independently
 HPy_Close(ctx, x);
 HPy_Close(ctx, y);
}

Calling any HPy function on a closed handle is an error. Calling
HPy_Close() on the same handle twice is an error. Forgetting to call
HPy_Close() on a handle results in a memory leak. When running in
Debug Mode, HPy actively checks that you don’t
close a handle twice and that you don’t forget to close any.

Note

Debug mode is a good example of how powerful it is to decouple the
identity and therefore the lifetime of handles and those of objects.
If you find a memory leak on CPython, you know that you are missing a
Py_DECREF somewhere but the only way to find the corresponding
Py_INCREF is to manually and carefully study the source code.
On the other hand, if you forget to call HPy_Close(), debug mode
is able to identify the precise code location which created the unclosed
handle. Similarly, if you try to operate on a closed handle, it will
identify the precise code locations which created and closed it. This is
possible because handles are associated with a single call to a C/API
function. As a result, given a handle that is leaked or used after freeing,
it is possible to identify exactly the C/API function that producted it.

Remember that Python/C guarantees that multiple references to the same
object results in the very same PyObject * pointer. Thus, it is
possible to compare the pointer addresses to check whether they refer
to the same object:

int is_same_object(PyObject *x, PyObject *y)
{
 return x == y;
}

On the other hand, in HPy, each handle is independent and it is common to have
two different handles which point to the same underlying object, so comparing
two handles directly is ill-defined. To prevent this kind of common error
(especially when porting existing code to HPy), the HPy C type is opaque
and the C compiler actively forbids comparisons between them. To check for
identity, you can use HPy_Is():

int is_same_object(HPyContext *ctx, HPy x, HPy y)
{
 // return x == y; // compilation error!
 return HPy_Is(ctx, x, y);
}

Note

The main benefit of opaque handle semantics is that implementations are
allowed to use very different models of memory management. On CPython,
implementing handles is trivial because HPy is basically PyObject *
in disguise, and HPy_Dup() and HPy_Close() are just aliases for
Py_INCREF and Py_DECREF.

Unlike CPython, PyPy does not use reference counting to manage memory:
instead, it uses a moving GC, which means that the address of an object
might change during its lifetime, and this makes it hard to implement
semantics like PyObject *’s where the address identifies the object,
and this is directly exposed to the user. HPy solves this problem: on
PyPy, handles are integers which represent indices into a list, which
is itself managed by the GC. When an address changes, the GC edits the
list, without having to touch all the handles which have been passed to C.

HPyContext

All HPy function calls take an HPyContext as a first argument, which
represents the Python interpreter all the handles belong to. Strictly
speaking, it would be possible to design the HPy API without using
HPyContext: after all, all HPy function calls are ultimately mapped to
Python/C function call, where there is no notion of context.

One of the reasons to include HPyContext from the day one is to be
future-proof: it is conceivable to use it to hold the interpreter or the
thread state in the future, in particular when there will be support for
sub-interpreters. Another possible usage could be to embed different versions
or implementations of Python inside the same process. In addition, the
HPyContext may also be extended by adding new functions to the end without
breaking any extensions built against the current HPyContext.

Moreover, HPyContext is used by the HPy Universal ABI to contain a
sort of virtual function table which is used by the C extensions to call back
into the Python interpreter.

A simple example

In this section, we will see how to write a simple C extension using HPy. It
is assumed that you are already familiar with the existing Python/C API, so we
will underline the similarities and the differences with it.

We want to create a function named myabs and double which takes a
single argument and computes its absolute value:

#include "hpy.h"

HPyDef_METH(myabs, "myabs", HPyFunc_O)
static HPy myabs_impl(HPyContext *ctx, HPy self, HPy arg)
{
 return HPy_Absolute(ctx, arg);
}

There are a couple of points which are worth noting:

	We use the macro HPyDef_METH to declare we are going to define a HPy
function called myabs.

	The function will be available under the name "myabs" in our Python
module.

	The actual C function which implements myabs is called myabs_impl
and is infered by the macro. The macro takes the name and adds _impl
to the end of it.

	It uses the HPyFunc_O calling convention. Like METH_O in Python/C API,
HPyFunc_O means that the function receives a single argument on top of
self.

	myabs_impl takes two arguments of type HPy: handles for self
and the argument, which are guaranteed to be valid. They are automatically
closed by the caller, so there is no need to call HPy_Close on them.

	myabs_impl returns a handle, which has to be closed by the caller.

	HPy_Absolute is the equivalent of PyNumber_Absolute and
computes the absolute value of the given argument.

	We also do not call HPy_Close on the result returned to the caller.
We must return a valid handle.

Note

Among other things,
the HPyDef_METH macro is needed to maintain compatibility with CPython.
In CPython, C functions and methods have a C signature that is different to
the one used by HPy: they don’t receive an HPyContext and their arguments
have the type PyObject * instead of HPy. The macro automatically
generates a trampoline function whose signature is appropriate for CPython and
which calls the myabs_impl. This trampoline is then used from both the
CPython ABI and the CPython implementation of the universal ABI, but other
implementations of the universal ABI will usually call directly the HPy
function itself.

The second function definition is a bit different:

HPyDef_METH_IMPL(double_num, "double", double_impl, HPyFunc_O)
static HPy double_impl(HPyContext *ctx, HPy self, HPy arg)
{
 return HPy_Add(ctx, arg, arg);
}

This shows off the other way of creating functions.

	This example is much the same but the difference is that we use
HPyDef_METH_IMPL to define a function named double.

	The difference between HPyDef_METH_IMPL and HPyDef_METH is that
the former needs to be given a name for a the functions as the third
argument.

Now, we can define our module:

static HPyDef *SimpleMethods[] = {
 &myabs,
 &double_num,
 NULL,
};

static HPyModuleDef simple = {
 .name = "simple",
 .doc = "HPy Example",
 .size = -1,
 .defines = SimpleMethods,
 .legacy_methods = NULL
};

This part is very similar to the one you would write in Python/C. Note that
we specify myabs (and not myabs_impl) in the method table. There
is also the .legacy_methods field, which allows to add methods that use the
Python/C API, i.e., the value should be an array of PyMethodDef. This
feature enables support for hybrid extensions in which some of the methods
are still written using the Python/C API.

Finally, HPyModuleDef is basically the same as the old PyModuleDef:

HPy_MODINIT(simple)
HPy init_simple_impl(HPyContext *ctx) {
 return HPyModule_Create(ctx, &simple);
}

Building the module

Let’s write a setup.py to build our extension:

from setuptools import setup, Extension
from os import path

setup(
 name="hpy-simple-example",
 hpy_ext_modules=[
 Extension('simple', sources=[path.join(path.dirname(__file__), 'simple.c')]),
],
 setup_requires=['hpy'],
)

We can now build the extension by running python setup.py build_ext -i. On
CPython, it will target the CPython ABI by default, so you will end up with
a file named e.g. simple.cpython-37m-x86_64-linux-gnu.so which can be
imported directly on CPython with no dependency on HPy.

To target the HPy Universal ABI instead, it is possible to pass the
option --hpy-abi=universal to setup.py. The following command will
produce a file called simple.hpy.so (note that you need to specify
--hpy-abi before build_ext, since it is a global option):

python setup.py --hpy-abi=universal build_ext -i

Note

This command will also produce a Python file named simple.py, which
loads the HPy module using the universal.load function from
the hpy Python package.

VARARGS calling convention

If we want to receive more than a single arguments, we need the
HPy_METH_VARARGS calling convention. Let’s add a function add_ints
which adds two integers:

HPyDef_METH(add_ints, "add_ints", HPyFunc_VARARGS)
static HPy add_ints_impl(HPyContext *ctx, HPy self, HPy *args, HPy_ssize_t nargs)
{
 long a, b;
 if (!HPyArg_Parse(ctx, NULL, args, nargs, "ll", &a, &b))
 return HPy_NULL;
 return HPyLong_FromLong(ctx, a+b);
}

There are a few things to note:

	The C signature is different than the corresponding Python/C
METH_VARARGS: in particular, instead of taking a PyObject *args,
we take an array of HPy and its size. This allows e.g. PyPy to do a
call more efficiently, because you don’t need to create a tuple just to
pass the arguments.

	We call HPyArg_Parse to parse the arguments. Contrarily to almost all
the other HPy functions, this is not a thin wrapper around
PyArg_ParseTuple because as stated above we don’t have a tuple to pass
to it, although the idea is to mimic its behavior as closely as
possible. The parsing logic is implemented from scratch inside HPy, and as
such there might be missing functionality during the early stages of HPy
development.

	If an error occurs, we return HPy_NULL: we cannot simply return NULL
because HPy is not a pointer type.

Once we have written our function, we can add it to the SimpleMethods[]
table, which now becomes:

static HPyDef *SimpleMethods[] = {
 &myabs,
 &add_ints,
 NULL,
};

Porting guide

Porting PyObject * to HPy API constructs

While in CPython one always uses PyObject * to reference to Python objects,
in HPy there are several types of handles that should be used depending on the
life-time of the handle: HPy, HPyField, and HPyGlobal.

	HPy represents short lived handles that live no longer than the duration of
one call from Python to HPy extension function. Rule of thumb: use for local
variables, arguments, and return values.

	HPyField represents handles that are Python object struct fields, i.e.,
live in native memory attached to some Python object.

	HPyGlobal represents handles stored in C global variables. HPyGlobal
can provide isolation between subinterpreters.

WARNING: never use a local variable of type HPyField, for any reason!
If the GC kicks in, it might become invalid and become a dangling pointer.

WARNING: never store HPy handles to a long-lived memory, for example: C global
variables or Python object structs.

The HPy/HPyField dichotomy might seem arbitrary at first, but it is
needed to allow Python implementations to use a moving GC, such as PyPy. It is
easier to explain and understand the rules by thinking about how a moving GC
interacts with the C code inside an HPy extension.

It is worth remembering that during the collection phase, a moving GC might
move an existing object to another memory location, and in that case it needs
to update all the places which store a pointer to it. In
order to do so, it needs to know where the pointers are. If there is a local C
variable which is unknown to the GC but contains a pointer to a GC-managed
object, the variable will point to invalid memory as soon as the object is
moved.

Back to HPy vs HPyField vs HPyGlobal:

	HPy handles must be used for all C local variables, function arguments
and function return values. They are supposed to be short-lived and closed
as soon as they are no longer needed. The debug mode will report a
long-lived HPy as a potential memory leak.

	In PyPy and GraalPython, HPy handles are implemented using an indirection:
they are indexes inside a big list of GC-managed objects: this big list is
tracked by the GC, so when an object moves its pointer is correctly updated.

	HPyField is for long-lived references, and the GC must be aware of
their location in memory. In PyPy, an HPyField is implemented as a
direct pointer to the object, and thus we need a way to inform the GC
where it is in memory, so that it can update its value upon moving: this
job is done by tp_traverse, as explained in the next section.

	HPyGlobal is for long-lived references that are supposed to be closed
implicitly when the module is unloaded (once module unloading is actually
implemented). HPyGlobal provides indirection to isolate subinterpreters.
Implementation wise, HPyGlobal will usually contain an index to a table
with Python objects stored in the interpreter state.

	On CPython without subinterpreters support, HPy, HPyGlobal,
and HPyField are implemented as PyObject *.

	On CPython with subinterpreters support, HPyGlobal will be implemented
by an indirection through the interpreter state. Note that thanks to the HPy
design, switching between this and the more efficient implementation without
subinterpreter support will not require rebuilding of the extension (in HPy
universal mode), nor rebuilding of CPython.

IMPORTANT: if you write a custom type having HPyField s, you MUST
also write a tp_traverse slot. Note that this is different than the old
Python/C API, where you need tp_traverse only under certain
conditions. See the next section for more details.

IMPORTANT: the contract of tp_traverse is that it must visit all the
HPyFields contained within given struct, or more precisely “owned” by given
Python object (in the sense of the “owner” argument to HPyField_Store), and
nothing more, nothing less. Some Python implementations may choose to not call the
provided tp_traverse if they know how to visit all the HPyFields by other
means (for example, when they track them internally already). The debug mode will
check this contract.

tp_traverse, tp_clear, Py_TPFLAGS_HAVE_GC

Let’s quote the Python/C documentation about GC support [https://docs.python.org/3/c-api/gcsupport.html]

Python’s support for detecting and collecting garbage which involves
circular references requires support from object types which are
“containers” for other objects which may also be containers. Types which do
not store references to other objects, or which only store references to
atomic types (such as numbers or strings), do not need to provide any
explicit support for garbage collection.

A good rule of thumb is that if your type contains PyObject * fields, you
need to:

	provide a tp_traverse slot;

	provide a tp_clear slot;

	add the Py_TPFLAGS_GC to the tp_flags.

However, if you know that your PyObject * fields will contain only
“atomic” types, you can avoid these steps.

In HPy the rules are slightly different:

	if you have a field of type HPyField, you always MUST provide a
tp_traverse. This is needed so that a moving GC can track the
relevant areas of memory. However, you MUST NOT rely on
tp_traverse to be called;

	tp_clear does not exist. On CPython, HPy automatically generates
one for you, by using tp_traverse to know which are the fields to
clear. Other implementations are free to ignore it, if it’s not needed;

	HPy_TPFLAGS_GC is still needed, especially on CPython. If you don’t
specify it, your type will not be tracked by CPython’s GC and thus it
might cause memory leaks if it’s part of a reference cycle. However,
other implementations are free to ignore the flag and track the objects
anyway, if their GC implementation allows it.

tp_dealloc and Py_DECREF

Generally speaking, if you have one or more PyObject * fields in the old
Python/C, you must provide a tp_dealloc slot where you Py_DECREF all
of them. In HPy this is not needed and will be handled automatically by the
system.

In particular, when running on top of CPython, HPy will automatically provide
a tp_dealloc which decrefs all the fields listed by tp_traverse.

PyModule_AddObject

PyModule_AddObject() is replaced with a regular HPy_SetAttr_s(). There
is no HPyModule_AddObject() because it has an unusual refcount behaviour
(stealing a reference but only when it returns 0).

Py_tp_dealloc

Py_tp_dealloc becomes HPy_tp_destroy. We changed the name a little bit
because only “lightweight” destructors are supported. Use tp_finalize if
you really need to do things with the context or with the handle of the
object.

Py_tp_methods, Py_tp_members and Py_tp_getset

Py_tp_methods, Py_tp_members and Py_tp_getset are no longer needed.
Methods, members and getsets are specified “flatly” together with the other
slots, using the standard mechanism of HPyDef_{METH,MEMBER,GETSET} and
HPyType_Spec.defines.

PyList_New/PyList_SET_ITEM

PyList_New(5)/PyList_SET_ITEM() becomes:

HPyListBuilder builder = HPyListBuilder_New(ctx, 5);
HPyListBuilder_Set(ctx, builder, 0, h_item0);
...
HPyListBuilder_Append(ctx, builder, h_item5);
...
HPy h_list = HPyListBuilder_Build(ctx, builder);

For lists of (say) integers:

HPyListBuilder_i builder = HPyListBuilder_i_New(ctx, 5);
HPyListBuilder_i_Set(ctx, builder, 0, 42);
...
HPy h_list = HPyListBuilder_i_Build(ctx, builder);

And similar for building tuples or bytes

PyObject_Call and PyObject_CallObject

Both PyObject_Call and PyObject_CallObject are replaced by
HPy_CallTupleDict(callable, args, kwargs) in which either or both of
args and kwargs may be null handles.

PyObject_Call(callable, args, kwargs) becomes:

HPy result = HPy_CallTupleDict(ctx, callable, args, kwargs);

PyObject_CallObject(callable, args) becomes:

HPy result = HPy_CallTupleDict(ctx, callable, args, HPy_NULL);

If args is not a handle to a tuple or kwargs is not a handle to a
dictionary, HPy_CallTupleDict will return HPy_NULL and raise a
TypeError. This is different to PyObject_Call and
PyObject_CallObject which may segfault instead.

Buffers

The buffer API in HPy is implemented using the HPy_buffer struct, which looks
very similar to Py_buffer (refer to the CPython documentation [https://docs.python.org/3.6/c-api/buffer.html#buffer-structure] for the
meaning of the fields):

typedef struct {
 void *buf;
 HPy obj;
 HPy_ssize_t len;
 HPy_ssize_t itemsize;
 int readonly;
 int ndim;
 char *format;
 HPy_ssize_t *shape;
 HPy_ssize_t *strides;
 HPy_ssize_t *suboffsets;
 void *internal;
} HPy_buffer;

Buffer slots for HPy types are specified using slots HPy_bf_getbuffer and
HPy_bf_releasebuffer on all supported Python versions, even though the
matching PyType_Spec slots, Py_bf_getbuffer and Py_bf_releasebuffer, are
only available starting from CPython 3.9.

Porting Example

HPy supports incrementally porting an existing C extension from the
original Python C API to the HPy API and to have the extension compile and
run at each step along the way.

Here we walk through porting a small C extension that implements a Point type
with some simple methods (a norm and a dot product). The Point type is minimal,
but does contain additional C attributes (the x and y values of the point)
and an attribute (obj) that contains a Python object (that we will need to
convert from a PyObject * to an HPyField).

There is a separate C file illustrating each step of the incremental port:

	step_00_c_api.c: The original C API version that we are going to
port.

	step_01_hpy_legacy.c: A possible first step where all methods still
receive PyObject * arguments and may still cast them to PyPointObject *
if they are instances of Point.

	step_02_hpy_legacy.c: Shows how to transition some methods to HPy
methods that receive HPy handles as arguments while still supporting legacy
methods that receive PyObject * arguments.

	step_03_hpy_final.c: The completed port to HPy where all methods
receive HPy handles and PyObject_HEAD has been removed.

Take a moment to read through step_00_c_api.c. Then, once you’re
ready, keep reading.

Each section below corresponds to one of the three porting steps above:

	Step 01: Converting the module to a (legacy) HPy module

	Step 02: Transition some methods to HPy

	Step 03: Complete the port to HPy

Note

The steps used here are one approach to porting a module. The specific
steps are not required. They’re just an example approach.

Step 01: Converting the module to a (legacy) HPy module

First for the easy bit – let’s include hpy.h:

	3

	#include <hpy.h>

We’d like to differentiate between references to PyPointObject that have
been ported to HPy and those that haven’t, so let’s rename it to PointObject
and alias PyPointObject to PointObject. We’ll keep PyPointObject for
the instances that haven’t been ported yet (the legacy ones) and use
PointObject where we have ported the references:

	16
17
18
19
20
21
22
23

	typedef struct {
 // PyObject_HEAD is required while legacy_slots are still used
 // but can (and should) be removed once the port to HPy is completed.
 PyObject_HEAD
 double x;
 double y;
 PyObject *obj;
} PointObject;

	29

	typedef PointObject PyPointObject;

For this step, all references will be to PyPointObject – we’ll only start
porting references in the next step.

Let’s also call HPyType_LEGACY_HELPERS to define some helper functions
for use with the PointObject struct:

	37

	HPyType_LEGACY_HELPERS(PointObject)

Again, we won’t use these helpers in this step – we’re just setting things
up for later.

Now for the big steps.

We need to replace PyType_Spec for the Point type with the equivalent
HPyType_Spec:

	131
132
133
134
135
136
137
138
139
140
141
142
143
144

	// HPy type methods and slots (no methods or slots have been ported yet)
static HPyDef *point_defines[] = {
 NULL
};

static HPyType_Spec Point_Type_spec = {
 .name = "point_hpy_legacy_1.Point",
 .basicsize = sizeof(PointObject),
 .itemsize = 0,
 .flags = HPy_TPFLAGS_DEFAULT,
 .builtin_shape = SHAPE(PointObject),
 .legacy_slots = Point_legacy_slots,
 .defines = point_defines,
};

Initially the list of ported methods in point_defines is empty and all of
the methods are still in Point_slots which we have renamed to
Point_legacy_slots for clarity.

SHAPE(PointObject) is a macro that retrieves the shape of PointObject as it
was defined by the HPyType_LEGACY_HELPERS macro and will be set to
HPyType_BuiltinShape_Legacy until we replace the legacy macro with the
HPyType_HELPERS one. Any type with legacy_slots or that still includes
PyObject_HEAD in its struct should have .builtin_shape set to
HPyType_BuiltinShape_Legacy.

Similarly we replace PyModuleDef with HPyModuleDef:

	146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

	// Legacy module methods (the "dot" method is still a PyCFunction)
static PyMethodDef PointModuleLegacyMethods[] = {
 {"dot", (PyCFunction)dot, METH_VARARGS, "Dot product."},
 {NULL, NULL, 0, NULL}
};

// HPy module methods (no methods have been ported yet)
static HPyDef *module_defines[] = {
 NULL
};

static HPyModuleDef moduledef = {
 .name = "step_01_hpy_legacy",
 .doc = "Point module (Step 1; All legacy methods)",
 .size = -1,
 .legacy_methods = PointModuleLegacyMethods,
 .defines = module_defines,
};

Like the type, the list of ported methods in module_defines is initially
empty and all the methods are still in PointModuleMethods which has
been renamed to PointModuleLegacyMethods.

Now all that is left is to replace the module initialization function with
one that uses HPy_MODINIT:

	165
166
167
168
169
170
171
172
173
174
175
176
177
178

	HPy_MODINIT(step_01_hpy_legacy)
static HPy init_step_01_hpy_legacy_impl(HPyContext *ctx)
{
 HPy m = HPyModule_Create(ctx, &moduledef);
 if (HPy_IsNull(m))
 return HPy_NULL;

 HPy point_type = HPyType_FromSpec(ctx, &Point_Type_spec, NULL);
 if (HPy_IsNull(point_type))
 return HPy_NULL;
 HPy_SetAttr_s(ctx, m, "Point", point_type);

 return m;
}

And we’re done!

Note that the initialization function now takes an HPyContext * as an
argument and that this ctx is passed as the first argument to calls to
HPy API methods.

PyModule_Create is replaced with HPyModule_Create and PyType_FromSpec
is replaced by HPyType_FromSpec.

HPy_SetAttr_s is used to add the Point class to the module. HPy requires no
special PyModule_AddObject method.

Step 02: Transition some methods to HPy

In the previous step we put in place the type and module definitions required
to create an HPy extension module. In this step we will port some individual
methods.

Let us start by migrating Point_traverse. First we need to change
PyObject *obj in the PointObject struct to HPyField obj:

	16
17
18
19
20
21
22
23
24
25

	typedef struct {
 // PyObject_HEAD is required while legacy methods still access
 // PointObject and should be removed once the port to HPy is completed.
 PyObject_HEAD
 double x;
 double y;
 // HPy handles are shortlived to support all GC strategies
 // For that reason, PyObject* in C structs are replaced by HPyField
 HPyField obj;
} PointObject;

HPy handles can only be short-lived – i.e. local variables, arguments to
functions or return values. HPyField is the way to store long-lived
references to Python objects. For more information, please refer to the
documentation of HPyField.

Now we can update Point_traverse:

	40
41
42
43
44
45

	HPyDef_SLOT(Point_traverse, HPy_tp_traverse)
int Point_traverse_impl(void *self, HPyFunc_visitproc visit, void *arg)
{
 HPy_VISIT(&((PointObject*)self)->obj);
 return 0;
}

In the first line we used the HPyDef_SLOT macro to define a small structure
that describes the slot being implemented. The first argument, Point_traverse,
is the name to assign the structure to. By convention, the HPyDef_SLOT macro
expects a function called Point_traverse_impl implementing the slot. The
second argument, HPy_tp_traverse, specifies the kind of slot.

This is a change from how slots are defined in the old C API. In the old API,
the kind of slot is only specified much lower down in Point_legacy_slots. In
HPy the implementation and kind are defined in one place using a syntax
reminiscent of Python decorators.

The implementation of traverse is now a bit simpler than in the old C API.
We no longer need to visit Py_TYPE(self) and need only HPy_VISIT
self->obj. HPy ensures that interpreter knows that the type of the instance
is still referenced.

Only struct members of type HPyField can be visited with HPy_VISIT, which
is why we needed to convert obj to an HPyField before we implemented the
HPy traverse.

Next we must update Point_init to store the value of obj as an HPyField:

	48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

	HPyDef_SLOT(Point_init, HPy_tp_init)
int Point_init_impl(HPyContext *ctx, HPy self, HPy *args, HPy_ssize_t nargs, HPy kw)
{
 static const char *kwlist[] = {"x", "y", "obj", NULL};
 PointObject *p = PointObject_AsStruct(ctx, self);
 p->x = 0.0;
 p->y = 0.0;
 HPy obj = HPy_NULL;
 HPyTracker ht;
 if (!HPyArg_ParseKeywords(ctx, &ht, args, nargs, kw, "|ddO", kwlist,
 &p->x, &p->y, &obj))
 return -1;
 if (HPy_IsNull(obj))
 obj = ctx->h_None;
 // INCREF not needed because HPyArg_ParseKeywords does not steal a reference
 HPyField_Store(ctx, self, &p->obj, obj);
 HPyTracker_Close(ctx, ht);
 return 0;
}

There are a few new HPy constructs used here:

	The kind of the slot passed to HPyDef_SLOT is HPy_tp_init.

	PointObject_AsStruct is defined by HPyType_LEGACY_HELPERS and returns
an instance of the PointObject struct. Because we still include
PyObject_HEAD at the start of the struct this is still a valid PyObject *
but once we finish the port the struct will no longer contain PyObject_HEAD
and this will just be an ordinary C struct with no memory overhead!

	We use HPyTracker when parsing the arguments with HPyArg_ParseKeywords.
The HPyTracker keeps track of open handles so that they can be closed
easily at the end with HPyTracker_Close.

	HPyArg_ParseKeywords is the equivalent of PyArg_ParseTupleAndKeywords.
Note that the HPy version does not steal a reference like the Python
version.

	HPyField_Store is used to store a reference to obj in the struct. The
arguments are the context (ctx), a handle to the object that owns the
reference (self), the address of the HPyField (&p->obj), and the
handle to the object (obj).

Note

An HPyTracker is not strictly needed for HPyArg_ParseKeywords
in Point_init. The arguments x and y are C floats (so there are no
handles to close) and the handle stored in obj was passed in to the
Point_init as an argument and so should not be closed.

We showed the tracker here to demonstrate its use. You can read more
about argument parsing in the
API docs.

If a tracker is needed and one is not provided, HPyArg_ParseKeywords
will return an error.

The last update we need to make for the change to HPyField is to migrate
Point_obj_get which retrieves obj from the stored HPyField:

	69
70
71
72
73
74

	HPyDef_GET(Point_obj, "obj", .doc="Associated object.")
HPy Point_obj_get(HPyContext *ctx, HPy self, void* closure)
{
 PointObject *p = PointObject_AsStruct(ctx, self);
 return HPyField_Load(ctx, self, p->obj);
}

Above we have used PointObject_AsStruct again, and then HPyField_Load to
retrieve the value of obj from the HPyField.

We’ve now finished all of the changes needed by introducing HPyField. We
could stop here, but let’s migrate one ordinary method, Point_norm, to end
off this stage of the port:

	77
78
79
80
81
82
83
84

	HPyDef_METH(Point_norm, "norm", HPyFunc_NOARGS, .doc="Distance from origin.")
HPy Point_norm_impl(HPyContext *ctx, HPy self)
{
 PointObject *p = PointObject_AsStruct(ctx, self);
 double norm;
 norm = sqrt(p->x * p->x + p->y * p->y);
 return HPyFloat_FromDouble(ctx, norm);
}

To define a method we use HPyDef_METH instead of HPyDef_SLOT. HPyDef_METH
creates a small structure defining the method. The first argument is the name
to assign to the structure (Point_norm). The second is the Python name of
the method (norm). The third specifies the method signature (HPyFunc_NOARGS
– i.e. no additional arguments in this case). The last provides the docstring.
The macro then expects a function named Point_norm_impl implementing the
method.

The rest of the implementation remains similar, except that we use
HPyFloat_FromDouble to create a handle to a Python float containing the
result (i.e. the distance of the point from the origin).

Now we are done and just have to remove the old implementations from
Point_legacy_slots and add them to point_defines:

	119
120
121
122
123
124
125

	static HPyDef *point_defines[] = {
 &Point_init,
 &Point_norm,
 &Point_obj,
 &Point_traverse,
 NULL
};

Step 03: Complete the port to HPy

In this step we’ll complete the port. We’ll no longer include Python, remove
PyObject_HEAD from the PointObject struct, and port the remaining methods.

First, let’s remove the import of Python.h:

	2

	// #include <Python.h> // disallow use of the old C API

And PyObject_HEAD from the struct:

	15
16
17
18
19
20
21
22
23

	typedef struct {
 // PyObject_HEAD is no longer available in PointObject. In CPython,
 // of course, it still exists but is inaccessible from HPy_AsStruct. In
 // other Python implementations (e.g. PyPy) it might no longer exist at
 // all.
 double x;
 double y;
 HPyField obj;
} PointObject;

And the typedef of PointObject to PyPointObject:

	29

	// typedef PointObject PyPointObject;

Now any code that has not been ported should result in a compilation error.

We must also change the type helpers from HPyType_LEGACY_HELPERS to
HPyType_HELPERS so that PointObject_AsStruct knows that PyObject_HEAD
has been removed:

	35

	HPyType_HELPERS(PointObject)

There is one more method to port, the dot method which is a module method
that implements the dot product between two points:

	84
85
86
87
88
89
90
91
92
93
94
95

	HPyDef_METH(dot, "dot", HPyFunc_VARARGS, .doc="Dot product.")
HPy dot_impl(HPyContext *ctx, HPy self, HPy *args, HPy_ssize_t nargs)
{
 HPy point1, point2;
 if (!HPyArg_Parse(ctx, NULL, args, nargs, "OO", &point1, &point2))
 return HPy_NULL;
 PointObject *p1 = PointObject_AsStruct(ctx, point1);
 PointObject *p2 = PointObject_AsStruct(ctx, point2);
 double dp;
 dp = p1->x * p2->x + p1->y * p2->y;
 return HPyFloat_FromDouble(ctx, dp);
}

The changes are similar to those used in porting the norm method, except:

	We use HPyArg_Parse instead of HPyArg_ParseKeywords.

	We opted not to use an HPyTracker by passing NULL as the pointer to the
tracker when calling HPyArg_Parse. There is no reason not to use a
tracker here, but the handles to the two points are passed in as arguments
to dot_impl and thus there is no need to close them (and they should not
be closed).

We use PointObject_AsStruct and HPyFloat_FromDouble as before.

Now that we have ported everything we can remove PointMethods,
Point_legacy_slots and PointModuleLegacyMethods. The resulting
type definition is much cleaner:

	111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

	static HPyDef *point_defines[] = {
 &Point_init,
 &Point_norm,
 &Point_obj,
 &Point_traverse,
 NULL
};

static HPyType_Spec Point_Type_spec = {
 .name = "point_hpy_final.Point",
 .doc = "Point (Step 03)",
 .basicsize = sizeof(PointObject),
 .itemsize = 0,
 .flags = HPy_TPFLAGS_DEFAULT,
 .defines = point_defines
};

and the module definition is simpler too:

	129
130
131
132
133
134
135
136
137
138
139

	static HPyDef *module_defines[] = {
 &dot,
 NULL
};

static HPyModuleDef moduledef = {
 .name = "step_03_hpy_final",
 .doc = "Point module (Step 3; Porting complete)",
 .size = -1,
 .defines = module_defines,
};

Now that the port is complete, when we compile our extension in HPy
universal mode, we obtain a built extension that depends only on the HPy ABI
and not on the CPython ABI at all!

Debug Mode

HPy includes a debug mode which includes useful run-time checks to ensure
that C extensions use the API correctly. Its features include:

	No special compilation flags are required: it is enough to compile the
extension with the Universal ABI.

	Debug mode can be activated at import time, and it can be activated
per-extension.

	You pay the overhead of debug mode only if you use it. Extensions loaded
without the debug mode run at full speed.

This is possible because the whole of the HPy API is provided as part of the HPy
context, so debug mode can pass in a special debugging context without affecting
the performance of the regular context at all.

The debugging context can already check for:

	Leaked handles.

	Handles used after they are closed.

	Reading from a memory which is no longer guaranteed to be still valid,
for example, the buffer returned by HPyUnicode_AsUTF8AndSize after the
corresponding HPy handle was closed.

	Writing to memory which should be read-only, for example the buffer
returned by HPyUnicode_AsUTF8AndSize.

Activating Debug Mode

Debug mode works only for extensions built with HPy universal ABI.

To enable debug mode, use environment variable HPY_DEBUG. If
HPY_DEBUG=1, then all HPy modules are loaded with the debug context.
Alternatively HPY_DEBUG can be set to a comma separated list of names
of the modules that should be loaded in debug mode.

In order to verify that your extension is being loaded in debug mode, use
environment variable HPY_LOG. If this variable is set, then all HPy
extensions built in universal ABI mode print a message when loaded, such as:

> import snippets
Loading 'snippets' in HPy universal mode with a debug context

If the extension is built in CPython ABI mode, then the HPY_LOG environment
variable has no effect.

An HPy extension module may be also explicitly loaded in debug mode using:

mod = hpy.universal.load(module_name, so_filename, debug=True)

When loading HPy extensions explicitly, environment variables HPY_LOG
and HPY_DEBUG have no effect for that extension.

Using Debug Mode

HPy debug module uses the LeakDetector class to detect leaked HPy
handles. Example usage of LeakDetector:

def test_leak_detector():
 from hpy.debug.pytest import LeakDetector
 with LeakDetector() as ld:
 # add_ints is an HPy C function. If it forgets to close a handle,
 # LeakDetector will complain
 assert mixed.add_ints(40, 2) == 42

Additionally, the debug module also provides a pytest fixture, hpy_debug,
that for the time being, enables the LeakDetector. In the future, it
may also enable other useful debugging facilities.

from hpy.debug.pytest import hpy_debug
def test_that_uses_leak_detector_fixture(hpy_debug):
 # Run some HPy extension code

ATTENTION: The usage of LeakDetector or hpy_debug by itself does not
enable HPy debug mode! If debug mode is not enabled for any extension, then
those features have no effect.

When dealing with handle leaks, it is useful to get a stack trace of the
allocation of the leaked handle. This feature has large memory requirements
and is therefore opt-in. It can be activated by:

 hpy.debug.set_handle_stack_trace_limit(16)

and disabled by:

 hpy.debug.disable_handle_stack_traces()

Example

Following HPy function leaks a handle:

HPyDef_METH(test_leak_stacktrace, "test_leak_stacktrace", HPyFunc_NOARGS)
static HPy test_leak_stacktrace_impl(HPyContext *ctx, HPy self)
{
 HPy num = HPyLong_FromLong(ctx, 42);
 if (HPy_IsNull(num)) {
 return HPy_NULL;
 }
 // No HPy_Close(ctx, num);
 return HPy_Dup(ctx, ctx->h_None);
}

When this script is executed in debug mode:

Run with HPY_DEBUG=1
import hpy.debug
import snippets

hpy.debug.set_handle_stack_trace_limit(16)
from hpy.debug.pytest import LeakDetector
with LeakDetector() as ld:
 snippets.test_leak_stacktrace()

The output is:

Traceback (most recent call last):
 File "/path/to/hpy/docs/examples/debug-example.py", line 7, in <module>
 snippets.test_leak_stacktrace()
 File "/path/to/hpy/debug/leakdetector.py", line 43, in __exit__
 self.stop()
 File "/path/to/hpy/debug/leakdetector.py", line 36, in stop
 raise HPyLeakError(leaks)
hpy.debug.leakdetector.HPyLeakError: 1 unclosed handle:
 <DebugHandle 0x556bbcf907c0 for 42>
Allocation stacktrace:
/path/to/site-packages/hpy-0.0.4.dev227+gd7eeec6.d20220510-py3.8-linux-x86_64.egg/hpy/universal.cpython-38d-x86_64-linux-gnu.so(debug_ctx_Long_FromLong+0x45) [0x7f1d928c48c4]
/path/to/site-packages/hpy_snippets-0.0.0-py3.8-linux-x86_64.egg/snippets.hpy.so(+0x122c) [0x7f1d921a622c]
/path/to/site-packages/hpy_snippets-0.0.0-py3.8-linux-x86_64.egg/snippets.hpy.so(+0x14b1) [0x7f1d921a64b1]
/path/to/site-packages/hpy-0.0.4.dev227+gd7eeec6.d20220510-py3.8-linux-x86_64.egg/hpy/universal.cpython-38d-x86_64-linux-gnu.so(debug_ctx_CallRealFunctionFromTrampoline+0xca) [0x7f1d928bde1e]
/path/to/site-packages/hpy_snippets-0.0.0-py3.8-linux-x86_64.egg/snippets.hpy.so(+0x129b) [0x7f1d921a629b]
/path/to/site-packages/hpy_snippets-0.0.0-py3.8-linux-x86_64.egg/snippets.hpy.so(+0x1472) [0x7f1d921a6472]
/path/to/libpython3.8d.so.1.0(+0x10a022) [0x7f1d93807022]
/path/to/libpython3.8d.so.1.0(+0x1e986b) [0x7f1d938e686b]
/path/to/libpython3.8d.so.1.0(+0x2015e9) [0x7f1d938fe5e9]
/path/to/libpython3.8d.so.1.0(_PyEval_EvalFrameDefault+0x1008c) [0x7f1d938f875a]
/path/to/libpython3.8d.so.1.0(PyEval_EvalFrameEx+0x64) [0x7f1d938e86b8]
/path/to/libpython3.8d.so.1.0(_PyEval_EvalCodeWithName+0xfaa) [0x7f1d938fc8af]
/path/to/libpython3.8d.so.1.0(PyEval_EvalCodeEx+0x86) [0x7f1d938fca25]
/path/to/libpython3.8d.so.1.0(PyEval_EvalCode+0x4b) [0x7f1d938e862b]

For the time being, HPy uses the glibc backtrace and backtrace_symbols
functions [https://www.gnu.org/software/libc/manual/html_node/Backtraces.html].
Therefore all their caveats and limitations apply. Usual recommendations to get
more symbols in the traces and not only addresses, such as snippets.hpy.so(+0x122c), are:

	link your native code with -rdynamic flag (LDFLAGS="-rdynamic")

	build your code without optimizations and with debug symbols (CFLAGS="-O0 -g")

	use addr2line command line utility, e.g.: addr2line -e /path/to/snippets.hpy.so -C -f +0x122c

API Reference

WARNING: Generated API reference documentation is work in progress.
Some parts of the API are not included in this documentation yet.

	HPyField

	HPyGlobal

	Leave/enter Python execution (GIL)

	Argument Parsing
	Supported Formatting Strings

	Argument Parsing API

	Building complex Python objects
	Supported Formatting Strings

	API

	Runtime Helpers
	Runtime Helpers API

HPyField

HPy public API

	
HPy HPyField_Load(HPyContext *ctx, HPy source_object, HPyField source_field)
[source]

	

	
void HPyField_Store(HPyContext *ctx, HPy target_object, HPyField *target_field, HPy h)
[source]

	HPyFields should be used ONLY in parts of memory which is known to the GC,
e.g. memory allocated by HPy_New:

	NEVER declare a local variable of type HPyField

	NEVER use HPyField on a struct allocated by e.g. malloc()

CPython’s note: contrary to PyObject*, you don’t need to manually
manage refcounting when using HPyField: if you use HPyField_Store to
overwrite an existing value, the old object will be automatically decrefed.
This means that you CANNOT use HPyField_Store to write memory which
contains uninitialized values, because it would try to decref a dangling
pointer.

Note that HPy_New automatically zeroes the memory it allocates, so
everything works well out of the box. In case you are using manually
allocated memory, you should initialize the HPyField to HPyField_NULL.

Note the difference:

	obj->f = HPyField_NULL: this should be used only to initialize
uninitialized memory. If you use it to overwrite a valid HPyField, you
will cause a memory leak (at least on CPython)

	HPyField_Store(ctx, &obj->f, HPy_NULL): this does the right thing and
decref the old value. However, you CANNOT use it if the memory is not
initialized.

Note: target_object and source_object are there in case an implementation
needs to add write and/or read barriers on the objects. They are ignored by
CPython but e.g. PyPy needs a write barrier.

HPyGlobal

HPy public API

	
HPy HPyGlobal_Load(HPyContext *ctx, HPyGlobal global)
[source]

	

	
void HPyGlobal_Store(HPyContext *ctx, HPyGlobal *global, HPy h)
[source]

	HPyGlobal is an alternative to module state. HPyGlobal must be a statically
allocated C global variable registered in HPyModuleDef.globals array.
A HPyGlobal can be used only after the HPy module where it is registered was
created using HPyModule_Create.

HPyGlobal serves as an identifier of a Python object that should be globally
available per one Python interpreter. Python objects referenced by HPyGlobals
are destroyed automatically on the interpreter exit (not necessarily the
process exit).

HPyGlobal instance does not allow anything else but loading and storing
a HPy handle using a HPyContext. Even if the HPyGlobal C variable may
be shared between threads or different interpreter instances within one
process, the API to load and store a handle from HPyGlobal is thread-safe (but
like any other HPy API must not be called in HPy_LeavePythonExecution blocks).

Given that a handle to object X1 is stored to HPyGlobal using HPyContext of
Python interpreter I1, then loading a handle from the same HPyGlobal using
HPyContext of Python interpreter I1 should give a handle to the same object
X1. Another Python interpreter I2 running within the same process and using
the same HPyGlobal variable will not be able to load X1 from it, it will have
its own view on what is stored in the given HPyGlobal.

Python interpreters may use indirection to isolate different interpreter
instances, but alternative techniques such as copy-on-write or immortal
objects can be used to avoid that indirection (even selectively on per
object basis using tagged pointers).

CPython HPy implementation may even provide configuration option that
switches between a faster version that directly stores PyObject* to
HPyGlobal but does not support subinterpreters, or a version that supports
subinterpreters. For now, CPython HPy always stores PyObject* directly
to HPyGlobal.

While the standard implementation does not fully enforce the documented
contract, the HPy debug mode will enforce it (not implemented yet).

Implementation notes:
All Python interpreters running in one process must be compatible, because
they will share all HPyGlobal C level variables. The internal data stored
in HPyGlobal are specific for each HPy implementation, each implementation
is also responsible for handling thread-safety when initializing the
internal data in HPyModule_Create. Note that HPyModule_Create may be called
concurrently depending on the semantics of the Python implementation (GIL vs
no GIL) and also depending on the whether there may be multiple instances of
given Python interpreter running within the same process. In the future, HPy
ABI may include a contract that internal data of each HPyGlobal must be
initialized to its address using atomic write and HPy implementations will
not be free to choose what to store in HPyGlobal, however, this will allow
multiple different HPy implementations within one process. This contract may
also be activated only by some runtime option, letting the HPy implementation
use more optimized HPyGlobal implementation otherwise.

Leave/enter Python execution (GIL)

HPy public API

	
HPyThreadState HPy_LeavePythonExecution(HPyContext *ctx)
[source]

	

	
void HPy_ReenterPythonExecution(HPyContext *ctx, HPyThreadState state)
[source]

	Leaving Python execution: for releasing GIL and other use-cases.

In most situations, users should prefer using convenience macros:
HPy_BEGIN_LEAVE_PYTHON(context)/HPy_END_LEAVE_PYTHON(context)

HPy extensions may leave Python execution when running Python independent
code: long-running computations or blocking operations. When an extension
has left the Python execution it must not call any HPy API other than
HPy_ReenterPythonExecution. It can access pointers returned by HPy API,
e.g., HPyUnicode_AsUTF8String, provided that they are valid at the point
of calling HPy_LeavePythonExecution.

Python execution must be reentered on the same thread as where it was left.
The leave/enter calls must not be nested. Debug mode will, in the future,
enforce these constraints.

Python implementations may use this knowledge however they wish. The most
obvious use case is to release the GIL, in which case the
HPy_BEGIN_LEAVE_PYTHON/HPy_END_LEAVE_PYTHON becomes equivalent to
Py_BEGIN_ALLOW_THREADS/Py_END_ALLOW_THREADS.

Argument Parsing

Implementation of HPyArg_Parse and HPyArg_ParseKeywords.

Note: those functions are runtime helper functions, i.e., they are not part
of the HPy context, but are available to HPy extensions to incorporate at
compile time.

HPyArg_Parse parses positional arguments and replaces PyArg_ParseTuple.
HPyArg_ParseKeywords parses positional and keyword arguments and
replaces PyArg_ParseTupleAndKeywords.

HPy intends to only support the simpler format string types (numbers, bools)
and handles. More complex types (e.g. buffers) should be retrieved as
handles and then processed further as needed.

Supported Formatting Strings

Numbers

	b (int) [unsigned char]
	Convert a nonnegative Python integer to an unsigned tiny int, stored in a C unsigned char.

	B (int) [unsigned char]
	Convert a Python integer to a tiny int without overflow checking, stored in a C unsigned char.

	h (int) [short int]
	Convert a Python integer to a C short int.

	H (int) [unsigned short int]
	Convert a Python integer to a C unsigned short int, without overflow checking.

	i (int) [int]
	Convert a Python integer to a plain C int.

	I (int) [unsigned int]
	Convert a Python integer to a C unsigned int, without overflow checking.

	l (int) [long int]
	Convert a Python integer to a C long int.

	k (int) [unsigned long]
	Convert a Python integer to a C unsigned long without overflow checking.

	L (int) [long long]
	Convert a Python integer to a C long long.

	K (int) [unsigned long long]
	Convert a Python integer to a C unsigned long long without overflow checking.

	n (int) [HPy_ssize_t]
	Convert a Python integer to a C HPy_ssize_t.

	f (float) [float]
	Convert a Python floating point number to a C float.

	d (float) [double]
	Convert a Python floating point number to a C double.

Strings and buffers

These formats allow accessing an object as a contiguous chunk of memory.
You don’t have to provide raw storage for the returned unicode or bytes
area.

In general, when a format sets a pointer to a buffer, the pointer is valid
only until the corresponding HPy handle is closed.

s (unicode) [const char*]

Convert a Unicode object to a C pointer to a character string.
A pointer to an existing string is stored in the character pointer
variable whose address you pass. The C string is NUL-terminated.
The Python string must not contain embedded null code points; if it does,
a ValueError exception is raised. Unicode objects are converted
to C strings using ‘utf-8’ encoding. If this conversion fails,
a UnicodeError is raised.

Note: This format does not accept bytes-like objects and is therefore
not suitable for filesystem paths.

Handles (Python Objects)

	O (object) [HPy]
	Store a handle pointing to a generic Python object.

When using O with HPyArg_ParseKeywords, an HPyTracker is created and
returned via the parameter ht. If HPyArg_ParseKeywords returns
successfully, you must call HPyTracker_Close on ht once the
returned handles are no longer needed. This will close all the handles
created during argument parsing. There is no need to call
HPyTracker_Close on failure – the argument parser does this for you.

Miscellaneous

	p (bool) [int]
	Tests the value passed in for truth (a boolean predicate) and converts
the result to its equivalent C true/false integer value. Sets the int to
1 if the expression was true and 0 if it was false. This accepts any
valid Python value. See
Truth Value Testing [https://docs.python.org/3/library/stdtypes.html#truth]
for more information about how Python tests values for truth.

Options

	|
	Indicates that the remaining arguments in the argument list are optional.
The C variables corresponding to optional arguments should be initialized
to their default value — when an optional argument is not specified, the
contents of the corresponding C variable is not modified.

	$
	HPyArg_ParseKeywords() only: Indicates that the remaining arguments in
the argument list are keyword-only. Currently, all keyword-only arguments
must also be optional arguments, so | must always be specified before $
in the format string.

	:
	The list of format units ends here; the string after the colon is used as
the function name in error messages. : and ; are mutually exclusive and
whichever occurs first takes precedence.

	;
	The list of format units ends here; the string after the semicolon is
used as the error message instead of the default error message. : and ;
are mutually exclusive and whichever occurs first takes precedence.

Argument Parsing API

	
int HPyArg_Parse(HPyContext *ctx, HPyTracker *ht, HPy *args, HPy_ssize_t nargs, const char *fmt, ...)
[source]

	Parse positional arguments.

	Parameters

	
	ctx – The execution context.

	ht – An optional pointer to an HPyTracker. If the format string never
results in new handles being created, ht may be NULL. Currently
no formatting options to this function require an HPyTracker.

	args – The array of positional arguments to parse.

	nargs – The number of elements in args.

	fmt – The format string to use to parse the arguments.

	... – A va_list of references to variables in which to store the parsed
arguments. The number and types of the arguments should match the
the format strint, fmt.

	Returns

	0 on failure, 1 on success.

If a NULL pointer is passed to ht and an HPyTracker is required by
the format string, an exception will be raised.

If a pointer is provided to ht, the HPyTracker will always be created
and must be closed with HPyTracker_Close if parsing succeeds (after all
handles returned are no longer needed). If parsing fails, this function
will close the HPyTracker automatically.

Examples:

Using HPyArg_Parse without an HPyTracker:

long a, b;
if (!HPyArg_Parse(ctx, NULL, args, nargs, "ll", &a, &b))
 return HPy_NULL;
...

Using HPyArg_Parse with an HPyTracker:

long a, b;
HPyTracker ht;
if (!HPyArg_Parse(ctx, &ht, args, nargs, "ll", &a, &b))
 return HPy_NULL;
...
HPyTracker_Close(ctx, ht);
...

Note

Currently HPyArg_Parse never requires the use of an HPyTracker.
The option exists only to support releasing temporary storage used by
future format string codes (e.g. for character strings).

	
int HPyArg_ParseKeywords(HPyContext *ctx, HPyTracker *ht, HPy *args, HPy_ssize_t nargs, HPy kw, const char *fmt, const char *keywords[], ...)
[source]

	Parse positional and keyword arguments.

	Parameters

	
	ctx – The execution context.

	ht – An optional pointer to an HPyTracker. If the format string never
results in new handles being created, ht may be NULL. Currently
only the O formatting option to this function requires an HPyTracker.

	args – The array of positional arguments to parse.

	nargs – The number of elements in args.

	kw – A handle to the dictionary of keyword arguments.

	fmt – The format string to use to parse the arguments.

	keywords – An NULL terminated array of argument names. The number of names
should match the format string provided. Positional only arguments
should have the name “” (i.e. the null-terminated empty string).
Positional only arguments must preceded all other arguments.

	... – A va_list of references to variables in which to store the parsed
arguments. The number and types of the arguments should match the
the format strint, fmt.

	Returns

	0 on failure, 1 on success.

If a NULL pointer is passed to ht and an HPyTracker is required by
the format string, an exception will be raised.

If a pointer is provided to ht, the HPyTracker will always be created
and must be closed with HPyTracker_Close if parsing succeeds (after all
handles returned are no longer needed). If parsing fails, this function
will close the HPyTracker automatically.

Examples:

Using HPyArg_ParseKeywords without an HPyTracker:

long a, b;
if (!HPyArg_ParseKeywords(ctx, NULL, args, nargs, kw, "ll", &a, &b))
 return HPy_NULL;
...

Using HPyArg_ParseKeywords with an HPyTracker:

HPy a, b;
HPyTracker ht;
if (!HPyArg_ParseKeywords(ctx, &ht, args, nargs, kw, "OO", &a, &b))
 return HPy_NULL;
...
HPyTracker_Close(ctx, ht);
...

Note

Currently HPyArg_ParseKeywords only requires the use of an HPyTracker
when the O format is used. In future other new format string codes
(e.g. for character strings) may also require it.

Building complex Python objects

Implementation of HPy_BuildValue.

Note: HPy_BuildValue is a runtime helper functions, i.e., it is not a part
of the HPy context, but is available to HPy extensions to incorporate at
compile time.

HPy_BuildValue creates a new value based on a format string from the values
passed in variadic arguments. Returns HPy_NULL in case of an error and raises
an exception.

HPy_BuildValue does not always build a tuple. It builds a tuple only if its format
string contains two or more format units. If the format string is empty, it returns
None; if it contains exactly one format unit, it returns whatever object is described
by that format unit. To force it to return a tuple of size 0 or one, parenthesize the
format string.

Building complex values with HPy_BuildValue is more convenient than the equivalent
code that uses more granular APIs with proper error handling and cleanup. Moreover,
HPy_BuildValue provides straightforward way to port existing code that uses
Py_BuildValue.

HPy_BuildValue always returns a new handle that will be owned by the caller. Even
an artificial example ‘HPy_BuildValue(ctx, “O”, h)’ does not simply forward
the value stored in ‘h’ but duplicates the handle.

Supported Formatting Strings

Numbers

	i (int) [int]
	Convert a plain C int to a Python integer object.

	l (int) [long int]
	Convert a C long int to a Python integer object.

	I (int) [unsigned int]
	Convert a C unsigned int to a Python integer object.

	k (int) [unsigned long]
	Convert a C unsigned long to a Python integer object.

	L (int) [long long]
	Convert a C long long to a Python integer object.

	K (int) [unsigned long long]
	Convert a C unsigned long long to a Python integer object.

	f (float) [float]
	Convert a C float to a Python floating point number.

	d (float) [double]
	Convert a C double to a Python floating point number.

Collections

	(items) (tuple) [matching-items]
	Convert a sequence of C values to a Python tuple with the same number of items.

	[items] (list) [matching-items]
	Convert a sequence of C values to a Python list with the same number of items.

	{key:value} (dict) [matching-items]
	Convert a sequence of C values to a Python dict with the same number of items.

Misc

	O (Python object) [HPy]
	Pass an untouched Python object represented by the handle.

If the object passed in is a HPy_NULL, it is assumed that this was caused because
the call producing the argument found an error and set an exception. Therefore,
HPy_BuildValue will also immediately stop and return HPy_NULL but will not raise
any new exception. If no exception has been raised yet, SystemError is set.

Any HPy handle passed to HPy_BuildValue is always owned by the caller. HPy_BuildValue
never closes the handle nor transfers its ownership. If the handle is used, then
HPy_BuildValue creates a duplicate of the handle.

	S (Python object) [HPy]
	Alias for ‘O’.

API

Runtime Helpers

Runtime helper functions.

These are not part of the HPy context or ABI, but are available for
HPy extensions to incorporate at compile time.

Runtime Helpers API

	
int HPyHelpers_AddType(HPyContext *ctx, HPy obj, const char *name, HPyType_Spec *hpyspec, HPyType_SpecParam *params)
[source]

	Create a type and add it as an attribute on the given object. The type is
created using HPyType_FromSpec. The object is often a module that the type
is being added to.

	Parameters

	
	ctx – The execution context.

	obj – A handle to the object the type is being added to (often a module).

	name – The name of the attribute on the object to assign the type to.

	hpyspec – The type spec to use to create the type.

	params – The type spec parameters to use to create the type.

	Returns

	0 on failure, 1 on success.

Examples:

Using HPyHelpers_AddType without any HPyType_SpecParam parameters:

if (!HPyHelpers_AddType(ctx, module, "MyType", hpyspec, NULL))
 return HPy_NULL;
...

Using HPyHelpers_AddType with HPyType_SpecParam parameters:

HPyType_SpecParam params[] = {
 { HPyType_SpecParam_Base, ctx->h_LongType },
 { 0 }
};

if (!HPyHelpers_AddType(ctx, module, "MyType", hpyspec, params))
 return HPy_NULL;
...

Misc notes

	bytes/str building API
	Current CPython API

	Raw-buffer vs Opaque API

	Problems and constraints

	Real world usage

bytes/str building API

We need to design an HPy API to build bytes and str objects. Before making
any proposal, it is useful to understand:

	What is the current API to build strings.

	What are the constraints for alternative implementations and the problems
of the current C API.

	What are the patterns used to build string objects in the existing
extensions.

Some terminology:

	“string” means both bytes and str objects

	“unicode” or “unicode string” indicates str

Note

In this document we are translating PyUnicode_* functions into
HPyStr_*. See issue #213 [https://github.com/hpyproject/hpy/issues/213]
for more discussion about the naming convention.

Note

The goal of the document is only to describe the current CPython API and
its real-world usage. For a discussion about how to design the equivalent
HPy API, see issue #214 [https://github.com/hpyproject/hpy/issues/214]

Current CPython API

Bytes

There are essentially two ways to build bytes:

	Copy the content from an existing C buffer:

PyObject* PyBytes_FromString(const char *v);
PyObject* PyBytes_FromStringAndSize(const char *v, Py_ssize_t len);
PyObject* PyBytes_FromFormat(const char *format, ...);

	Create an uninitialized buffer and fill it manually:

PyObject s = PyBytes_FromStringAndSize(NULL, size);
char *buf = PyBytes_AS_STRING(s);
strcpy(buf, "hello");

(1) is easy for alternative implementations and we can probably provide an HPy
equivalent without changing much, so we will concentrate on (2): let’s call it
“raw-buffer API”.

Unicode

Similarly to bytes, there are several ways to build a str:

PyObject* PyUnicode_FromString(const char *u);
PyObject* PyUnicode_FromStringAndSize(const char *u, Py_ssize_t size);
PyObject* PyUnicode_FromKindAndData(int kind, const void *buffer, Py_ssize_t size);
PyObject* PyUnicode_FromFormat(const char *format, ...);
PyObject* PyUnicode_New(Py_ssize_t size, Py_UCS4 maxchar);

Note

PyUnicode_FromString{,AndSize} take an UTF-8 string in input

The following functions are used to initialize an uninitialized object, but I
could not find any usage of them outside CPython itself, so I think they can
be safely ignored for now:

Py_ssize_t PyUnicode_Fill(PyObject *unicode, Py_ssize_t start, Py_ssize_t length, Py_UCS4 fill_char);
Py_ssize_t PyUnicode_CopyCharacters(PyObject *to, Py_ssize_t to_start, PyObject *from, Py_ssize_t from_start, Py_ssize_t how_many);

There are also a bunch of API functions which have been deprecated (see PEP
623 [https://www.python.org/dev/peps/pep-0623/] and PEP 624 [https://www.python.org/dev/peps/pep-0624/]) so we will not take them into
account. The deprecated functions include but are not limited to:

PyUnicode_FromUnicode
PyUnicode_FromStringAndSize(NULL,...) // use PyUnicode_New instead
PyUnicode_AS_UNICODE
PyUnicode_AS_DATA
PyUnicode_READY

Moreover, CPython 3.3+ adopted a flexible string represenation (PEP 393 [https://www.python.org/dev/peps/pep-0393/]) which means that the underlying
buffer of str objects can be an array of 1-byte, 2-bytes or 4-bytes
characters (the so called “kind”).

str objects offer a raw-buffer API, but you need to call the appropriate
function depending on the kind, returning buffers of different types:

typedef uint32_t Py_UCS4;
typedef uint16_t Py_UCS2;
typedef uint8_t Py_UCS1;
Py_UCS1* PyUnicode_1BYTE_DATA(PyObject *o);
Py_UCS2* PyUnicode_2BYTE_DATA(PyObject *o);
Py_UCS4* PyUnicode_4BYTE_DATA(PyObject *o);

Uninitialized unicode objects are created by calling PyUnicode_New(size,
maxchar), where maxchar is the maximum allowed value of a character
inside the string, and determines the kind. So, in cases in which maxchar
is known in advance, we can predict at compile time what will be the kind of
the string and write code accordingly. E.g.:

// ASCII only --> kind == PyUnicode_1BYTE_KIND
PyObject *s = PyUnicode_New(size, 127);
Py_UCS1 *buf = PyUnicode_1BYTE_DATA(s);
strcpy(buf, "hello");

Note

CPython distinguishes between PyUnicode_New(size, 127) and
PyUnicode_New(size, 255): in both cases the kind is
PyUnicode_1BYTE_KIND, but the former also sets a flag to indicate that
the string is ASCII-only.

There are cases in which you don’t know the kind in advance because you are
working on generic data. To solve the problem in addition to the raw-buffer
API, CPython also offers an “Opaque API” to write a char inside an unicode:

int PyUnicode_WriteChar(PyObject *unicode, Py_ssize_t index, Py_UCS4 character)
void PyUnicode_WRITE(int kind, void *data, Py_ssize_t index, Py_UCS4 value)

Note that the character to write is always Py_UCS4, so
_WriteChar/_WRITE have logic to do something different depending on
the kind.

Note

_WRITE is a macro, and its implementation contains a switch(kind):
I think it is designed with the explicit goal of allowing the compiler to
hoist the switch outside a loop in which we repeatedly call
_WRITE. However, it is worth noting that I could not find any code
using it outside CPython itself, so it’s probably something which we don’t
need to care of for HPy.

Raw-buffer vs Opaque API

There are two ways to initialize a non-initialized string object:

	Raw-buffer API: get a C pointer to the memory and fill it directly:
PyBytes_AsString, PyUnicode_1BYTE_DATA, etc.

	Opaque API: call special functions API to fill the content, without
accessing the buffer directly: e.g., PyUnicode_WriteChar.

From the point of view of the implementation, a completely opaque API gives
the most flexibility in terms of how to implement a builder and/or a string.
A good example is PyPy’s str type, which uses UTF-8 as the internal
representation. A completely opaque HPyStrBuilder could allow PyPy to fill
directly its internal UTF-8 buffer (at least in simple cases). On the other
hand, a raw-buffer API would force PyPy to store the UCS{1,2,4} bytes in a
temporary buffer and convert them to UTF-8 during the build() phase.

On the other hand, from the point of view of the C programmer it is easier to
have direct access the memory. This allows to:

	use memcpy() to copy data into the buffer

	pass the buffer directly to other C functions which write into it (e.g.,
read())

	use standard C patterns such as *p++ = ... or similar.

Problems and constraints

bytes and str are objects are immutable: the biggest problem of the
current API boils down to the fact that the API allows to construct objects
which are not fully initialized and to mutate them during a
not-well-specificed “initialization phase”.

Problems for alternative implementations:

	it assumes that the underlying buffer can be mutated. This might not be
always the case, e.g. if you want to use a Java string or an RPython string
as the data buffer. This might also lead to unnecessary copies.

	It makes harder to optimize the code: e.g. a JIT cannot safely assume that
a string is actually immutable.

	It interacts badly with a moving GC, because we need to ensure that buf
doesn’t move.

Introducing a builder solves most of the problems, because it introduces a
clear separation between the mutable and immutable phases.

Real world usage

In this section we analyze the usage of some string building API in
real world code, as found in the Top 4000 PyPI packages [https://github.com/hpyproject/top4000-pypi-packages].

PyUnicode_New

This is the recommended “modern” way to create str objects but it’s not
widely used outside CPython. A simple grep found only 17 matches in the
4000 packages, although some are in very important packages such as
cffi [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top100/0021-cffi-1.14.5/c/wchar_helper_3.h#L36],
markupsafe
(1 [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top100/0024-MarkupSafe-2.0.1/src/markupsafe/_speedups.c#L106],
2 [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top100/0024-MarkupSafe-2.0.1/src/markupsafe/_speedups.c#L132],
3 [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top100/0024-MarkupSafe-2.0.1/src/markupsafe/_speedups.c#L158])
and simplejson
(1 [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top100/0096-simplejson-3.17.2/simplejson/_speedups.c#L517],
2 [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top100/0096-simplejson-3.17.2/simplejson/_speedups.c#L3330]).

In all the examples linked above, maxchar is hard-coded and known at
compile time.

There are only four usages of PyUnicode_New in which maxchar is
actually unknown until runtime, and it is curious to note that the first three
are in runtime libraries used by code generators:

	mypyc [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0277-mypy-0.812/mypyc/lib-rt/str_ops.c#L22]

	Cython [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0158-Cython-0.29.23/Cython/Utility/StringTools.c#L829]

	siplib [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top4000/1236-PyQt5_sip-12.9.0/siplib.c#L12808]

	PyICU [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top4000/2601-PyICU-2.7.3/common.cpp#L213]:
this is the only non-runtime library usage of it, and it’s used to
implement a routine to create a str object from an UTF-16 buffer.

For HPy, we should at lest consider the opportunity to design special APIs for
the cases in which maxchar is known in advance,
e.g. HPyStrBuilder_ASCII, HPyStrBuilder_UCS1, etc., and evaluate
whether this would be beneficial for alternative implementations.

Create empty strings

A special case is PyUnicode_New(0, 0), which contructs an empty str
object. CPython special-cases it to always return a prebuilt object.

This pattern is used a lot inside CPython but only once in 3rd-party extensions, in the regex library (
1 [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0119-regex-2021.4.4/regex_3/_regex.c#L19486],
2 [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0119-regex-2021.4.4/regex_3/_regex.c#L19516]).

Other ways to build empty strings are PyUnicode_FromString("") which is used 27 times and PyUnicode_FromStringAndSize("", 0) which is used only once [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0268-pyodbc-4.0.30/src/textenc.cpp#L144].

For HPy, maybe we should just have a ctx->h_EmptyStr and
ctx->h_EmptyBytes?

PyUnicode_From*, PyUnicode_Decode*

Functions of the PyUnicode_From* and PyUnicode_Decode* families should
be easy to adapt to HPy, so we won’t discuss them in detail. However, here is
the of matches found by grep for each function, to get an idea of how much
each is used:

PyUnicode_From* family:

Documented:
 964 PyUnicode_FromString
 259 PyUnicode_FromFormat
 125 PyUnicode_FromStringAndSize
 58 PyUnicode_FromWideChar
 48 PyUnicode_FromEncodedObject
 17 PyUnicode_FromKindAndData
 9 PyUnicode_FromFormatV

Undocumented:
 7 PyUnicode_FromOrdinal

Deprecated:
 66 PyUnicode_FromObject
 45 PyUnicode_FromUnicode

PyUnicode_Decode* family:

143 PyUnicode_DecodeFSDefault
114 PyUnicode_DecodeUTF8
 99 PyUnicode_Decode
 64 PyUnicode_DecodeLatin1
 51 PyUnicode_DecodeASCII
 12 PyUnicode_DecodeFSDefaultAndSize
 10 PyUnicode_DecodeUTF16
 8 PyUnicode_DecodeLocale
 6 PyUnicode_DecodeRawUnicodeEscape
 3 PyUnicode_DecodeUTF8Stateful
 2 PyUnicode_DecodeUTF32
 2 PyUnicode_DecodeUnicodeEscape

Raw-buffer access

Most of the real world packages use the raw-buffer API to initialize str
objects, and very often in a way which can’t be easily replaced by a fully
opaque API.

Example 1, markupsafe: the
DO_ESCAPE [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top100/0024-MarkupSafe-2.0.1/src/markupsafe/_speedups.c#L35]
macro takes a parameter called outp which is obtained by calling
PyUnicode*BYTE_DATA
(1BYTE [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top100/0024-MarkupSafe-2.0.1/src/markupsafe/_speedups.c#L112],
(2BYTE [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top100/0024-MarkupSafe-2.0.1/src/markupsafe/_speedups.c#L137],
(4BYTE [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top100/0024-MarkupSafe-2.0.1/src/markupsafe/_speedups.c#L163]).
DO_ESCAPE contains code like this, which would be hard to port to a fully-opaque API:

memcpy(outp, inp-ncopy, sizeof(*outp)*ncopy); \
outp += ncopy; ncopy = 0; \
*outp++ = '&'; \
*outp++ = '#'; \
*outp++ = '3'; \
*outp++ = '4'; \
*outp++ = ';'; \
break; \

Another interesting example is
pybase64 [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top4000/1925-pybase64-1.1.4/pybase64/_pybase64.c#L320-349].
After removing the unnecessary stuff, the logic boils down to this:

out_len = (size_t)(((buffer.len + 2) / 3) * 4);
out_object = PyUnicode_New((Py_ssize_t)out_len, 127);
dst = (char*)PyUnicode_1BYTE_DATA(out_object);
...
base64_encode(buffer.buf, buffer.len, dst, &out_len, libbase64_simd_flag);

Note that base64_encode is an external C function which writes stuff into
a char * buffer, so in this case it is required to use the raw-buffer
API, unless you want to allocate a temporary buffer and copy chars one-by-one
later.

There are other examples similar to these, but I think there is already enough
evidence that HPy must offer a raw-buffer API in addition to a
fully-opaque one.

Typed vs untyped raw-buffer writing

To initialize a str object using the raw-buffer interface, you need to get
a pointer to the buffer. The vast majority of code uses
PyUnicode_{1,2,4}BYTE_DATA to get a buffer of type Py_UCS{1,2,4}* and
write directly to it:

PyObject *s = PyUnicode_New(size, 127);
Py_UCS1 *buf = PyUnicode_1BYTE_DATA(s);
buf[0] = 'H';
buf[1] = 'e';
buf[2] = 'l';
...

The other way to get a pointer to the raw-buffer is to call
PyUnicode_DATA(), which returns a void *: the only reasonable way to
write something in this buffer is to memcpy() the data from another
str buffer of the same kind. This technique is used for example by
CPython’s textio.c [https://github.com/antocuni/cpython/blob/7b3ab5921fa25ed8b97b6296f97c5c78aacf5447/Modules/_io/textio.c#L344].

Outside CPython, the only usage of this technique is inside cython’s helper
function __Pyx_PyUnicode_Join [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0158-Cython-0.29.23/Cython/Utility/StringTools.c#L857].

This probably means that we don’t need to offer untyped raw-buffer writing for
HPy. If we really need to support the memcpy use case, we can probably
just offer a special function in the builder API.

PyUnicode_WRITE, PyUnicode_WriteChar

Outside CPython, PyUnicode_WRITE() is used only inside Cython’s helper
functions
(1 [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0158-Cython-0.29.23/Cython/Utility/StringTools.c#L865],
2 [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0158-Cython-0.29.23/Cython/Utility/StringTools.c#L914-L926]).
Considering that Cython will need special support for HPy anyway, this means
that we don’t need an equivalent of PyUnicode_WRITE for HPy.

Similarly, PyUnicode_WriteChar() is used only once, inside
JPype [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0546-JPype1-1.2.1/native/python/jp_pythontypes.cpp#L196].

PyUnicode_Join

All the API functions listed above require the user to know in advance the
size of the string: PyUnicode_Join() is the only native API call which
allows to build a string whose size is not known in advance.

Examples of usage are found in simplejson
(1 [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top100/0096-simplejson-3.17.2/simplejson/_speedups.c#L779],
2 [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top100/0096-simplejson-3.17.2/simplejson/_speedups.c#L1033]),
pycairo [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0759-pycairo-1.20.0/cairo/path.c#L156],
regex
(1 [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0119-regex-2021.4.4/regex_3/_regex.c#L19492],
2 [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0119-regex-2021.4.4/regex_3/_regex.c#L22674],
3 [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0119-regex-2021.4.4/regex_3/_regex.c#L22768],
4 [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0119-regex-2021.4.4/regex_3/_regex.c#L19440],
5 [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0119-regex-2021.4.4/regex_3/_regex.c#L22495],
6 [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0119-regex-2021.4.4/regex_3/_regex.c#L22589])
and others, for a total of 25 grep matches.

Note

Contrarily to its unicode equivalent, PyBytes_Join() does not
exist. There is _PyBytes_Join() which is private and undocumented, but
some extensions rely on it anyway:
Cython [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0158-Cython-0.29.23/Cython/Utility/StringTools.c#L795],
regex [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top1000/0119-regex-2021.4.4/regex_3/_regex.c#L19501],
dulwich [https://github.com/hpyproject/top4000-pypi-packages/blob/0cd919943a007f95f4bf8510e667cfff5bd059fc/top4000/1424-dulwich-0.20.23/dulwich/_pack.c#L62].

In theory, alternative implementaions should be able to provide a more
efficient way to achieve the goal. E.g. for pure Python code PyPy offers
__pypy__.builders.StringBuilder which is faster than both StringIO and
''.join, so maybe it might make sense to offer a way to use it from C.

Changelog

Version 0.0.4 (May 25th, 2022)

New Features/API:

	HPy headers are C++ compliant

	Python 3.10 support

	HPyField [https://github.com/hpyproject/hpy/blob/master/hpy/tools/autogen/public_api.h#L323]:
References to Python objects that can be stored in raw native memory owned by Python objects.

	New API functions: HPyField_Load, HPyField_Store

	HPyGlobal [https://github.com/hpyproject/hpy/blob/master/hpy/tools/autogen/public_api.h#L383]:
References to Python objects that can be stored into a C global variable.

	New API functions: HPyGlobal_Load, HPyGlobal_Store

	Note: HPyGlobal does not allow to share Python objects between (sub)interpreters

	GIL support [https://github.com/hpyproject/hpy/blob/master/hpy/tools/autogen/public_api.h#L358]
- New API functions: HPy_ReenterPythonExecution, HPy_LeavePythonExecution

	Value building support [https://github.com/hpyproject/hpy/blob/master/hpy/devel/src/runtime/buildvalue.c#L4] (HPy_BuildValue)

	New type slots

	HPy_mp_ass_subscript, HPy_mp_length, HPy_mp_subscript

	HPy_tp_finalize

	Other new API functions

	HPyErr_SetFromErrnoWithFilename, HPyErr_SetFromErrnoWithFilenameObjects

	HPyErr_ExceptionMatches

	HPyErr_WarnEx

	HPyErr_WriteUnraisable

	HPy_Contains

	HPyLong_AsVoidPtr

	HPyLong_AsDouble

	HPyUnicode_AsASCIIString, HPyUnicode_DecodeASCII

	HPyUnicode_AsLatin1String, HPyUnicode_DecodeLatin1

	HPyUnicode_DecodeFSDefault, HPyUnicode_DecodeFSDefaultAndSize

	HPyUnicode_ReadChar

Debug mode:

	Support activation of debug mode via environment variable HPY_DEBUG

	Support capturing stack traces of handle allocations

	Check for invalid use of raw data pointers (e.g HPyUnicode_AsUTF8AndSize) after handle was closed.

	Detect invalid handles returned from extension functions

	Detect incorrect closing of handles passed as arguments

Misc Changes:

	Removed unnecessary prefix "m_" from fields of HPyModuleDef (incompatible change)

	For HPy implementors: new pytest mark for HPy tests assuming synchronous GC

Version 0.0.3 (September 22nd, 2021)

This release adds various new API functions (see below) and extends the debug
mode with the ability to track closed handles.
The default ABI mode now is ‘universal’ for non-CPython implementations.
Also, the type definition of HPyContext was changed and it’s no longer a
pointer type.
The name of the HPy dev package was changed to ‘hpy’ (formerly: ‘hpy.devel’).
Macro HPy_CAST was replaced by HPy_AsStruct.

New features:

	Added helper HPyHelpers_AddType for creating new types

	Support format specifier ‘s’ in HPyArg_Parse

	Added API functions: HPy_Is, HPy_AsStructLegacy (for legacy types),
HPyBytes_FromStringAndSize, HPyErr_NewException, HPyErr_NewExceptionWithDoc,
HPyUnicode_AsUTF8AndSize, HPyUnicode_DecodeFSDefault, HPyImport_ImportModule

	Debug mode: Implemented tracking of closed handles

	Debug mode: Add hook for invalid handle access

Bug fixes:

	Distinguish between pure and legacy types

	Fix Sphinx doc errors

Index

 C
 | H
 | P

C

 	
 	CPython ABI

H

 	
 	HPy Hybrid ABI

 	HPy Universal ABI

 	HPy_LeavePythonExecution (C function)

 	HPy_ReenterPythonExecution (C function)

 	HPyArg_Parse (C function)

 	
 	HPyArg_ParseKeywords (C function)

 	HPyField_Load (C function)

 	HPyField_Store (C function)

 	HPyGlobal_Load (C function)

 	HPyGlobal_Store (C function)

 	HPyHelpers_AddType (C function)

P

 	
 	
 Python Enhancement Proposals

 	PEP 3149

 Source code for autogen/public_api.h

 runtime/argparse.c

 Source code for runtime/argparse.c

/**
 * Implementation of HPyArg_Parse and HPyArg_ParseKeywords.
 *
 * Note: those functions are runtime helper functions, i.e., they are not part
 * of the HPy context, but are available to HPy extensions to incorporate at
 * compile time.
 *
 * HPyArg_Parse parses positional arguments and replaces PyArg_ParseTuple.
 * HPyArg_ParseKeywords parses positional and keyword arguments and
 * replaces PyArg_ParseTupleAndKeywords.
 *
 * HPy intends to only support the simpler format string types (numbers, bools)
 * and handles. More complex types (e.g. buffers) should be retrieved as
 * handles and then processed further as needed.
 *
 * Supported Formatting Strings
 * ----------------------------
 *
 * Numbers
 * ~~~~~~~
 *
 * ``b (int) [unsigned char]``
 * Convert a nonnegative Python integer to an unsigned tiny int, stored in a C unsigned char.
 *
 * ``B (int) [unsigned char]``
 * Convert a Python integer to a tiny int without overflow checking, stored in a C unsigned char.
 *
 * ``h (int) [short int]``
 * Convert a Python integer to a C short int.
 *
 * ``H (int) [unsigned short int]``
 * Convert a Python integer to a C unsigned short int, without overflow checking.
 *
 * ``i (int) [int]``
 * Convert a Python integer to a plain C int.
 *
 * ``I (int) [unsigned int]``
 * Convert a Python integer to a C unsigned int, without overflow checking.
 *
 * ``l (int) [long int]``
 * Convert a Python integer to a C long int.
 *
 * ``k (int) [unsigned long]``
 * Convert a Python integer to a C unsigned long without overflow checking.
 *
 * ``L (int) [long long]``
 * Convert a Python integer to a C long long.
 *
 * ``K (int) [unsigned long long]``
 * Convert a Python integer to a C unsigned long long without overflow checking.
 *
 * ``n (int) [HPy_ssize_t]``
 * Convert a Python integer to a C HPy_ssize_t.
 *
 * ``f (float) [float]``
 * Convert a Python floating point number to a C float.
 *
 * ``d (float) [double]``
 * Convert a Python floating point number to a C double.
 *
 * Strings and buffers
 * ~~~~~~~~~~~~~~~~~~~~~~~~
 *
 * These formats allow accessing an object as a contiguous chunk of memory.
 * You don't have to provide raw storage for the returned unicode or bytes
 * area.
 *
 * In general, when a format sets a pointer to a buffer, the pointer is valid
 * only until the corresponding HPy handle is closed.
 *
 * ``s (unicode) [const char*]``
 *
 * Convert a Unicode object to a C pointer to a character string.
 * A pointer to an existing string is stored in the character pointer
 * variable whose address you pass. The C string is NUL-terminated.
 * The Python string must not contain embedded null code points; if it does,
 * a `ValueError` exception is raised. Unicode objects are converted
 * to C strings using 'utf-8' encoding. If this conversion fails,
 * a `UnicodeError` is raised.
 *
 * Note: This format does not accept bytes-like objects and is therefore
 * not suitable for filesystem paths.
 *
 * Handles (Python Objects)
 * ~~~~~~~~~~~~~~~~~~~~~~~~
 *
 * ``O (object) [HPy]``
 * Store a handle pointing to a generic Python object.
 *
 * When using O with HPyArg_ParseKeywords, an HPyTracker is created and
 * returned via the parameter `ht`. If HPyArg_ParseKeywords returns
 * successfully, you must call HPyTracker_Close on `ht` once the
 * returned handles are no longer needed. This will close all the handles
 * created during argument parsing. There is no need to call
 * `HPyTracker_Close` on failure -- the argument parser does this for you.
 *
 * Miscellaneous
 * ~~~~~~~~~~~~~
 *
 * ``p (bool) [int]``
 * Tests the value passed in for truth (a boolean predicate) and converts
 * the result to its equivalent C true/false integer value. Sets the int to
 * 1 if the expression was true and 0 if it was false. This accepts any
 * valid Python value. See
 * `Truth Value Testing <https://docs.python.org/3/library/stdtypes.html#truth>`_
 * for more information about how Python tests values for truth.
 *
 * Options
 * ~~~~~~~
 *
 * ``|``
 * Indicates that the remaining arguments in the argument list are optional.
 * The C variables corresponding to optional arguments should be initialized
 * to their default value — when an optional argument is not specified, the
 * contents of the corresponding C variable is not modified.
 *
 * ``$``
 * HPyArg_ParseKeywords() only: Indicates that the remaining arguments in
 * the argument list are keyword-only. Currently, all keyword-only arguments
 * must also be optional arguments, so | must always be specified before $
 * in the format string.
 *
 * ``:``
 * The list of format units ends here; the string after the colon is used as
 * the function name in error messages. : and ; are mutually exclusive and
 * whichever occurs first takes precedence.
 *
 * ``;``
 * The list of format units ends here; the string after the semicolon is
 * used as the error message instead of the default error message. : and ;
 * are mutually exclusive and whichever occurs first takes precedence.
 *
 * Argument Parsing API
 * --------------------
 *
 */

#include "hpy.h"
#include <limits.h>
#include <stdio.h>

#define _BREAK_IF_OPTIONAL(current_arg) if (HPy_IsNull(current_arg)) break;

#define _ERR_STRING_MAX_LENGTH 512

static const char *
parse_err_fmt(const char *fmt, const char **err_fmt)
{
 const char *fmt1 = fmt;

 for (; *fmt1 != 0; fmt1++) {
 if (*fmt1 == ':' || *fmt1 == ';') {
 *err_fmt = fmt1;
 break;
 }
 }
 return fmt1;
}

static void
set_error(HPyContext *ctx, HPy exc, const char *err_fmt, const char *msg) {
 char err_buf[_ERR_STRING_MAX_LENGTH];
 if (err_fmt == NULL) {
 snprintf(err_buf, _ERR_STRING_MAX_LENGTH, "function %.256s", msg);
 }
 else if (*err_fmt == ':') {
 snprintf(err_buf, _ERR_STRING_MAX_LENGTH, "%.200s() %.256s", err_fmt + 1, msg);
 }
 else {
 snprintf(err_buf, _ERR_STRING_MAX_LENGTH, "%s", err_fmt + 1);
 }
 HPyErr_SetString(ctx, exc, err_buf);
}

static int
parse_item(HPyContext *ctx, HPyTracker *ht, HPy current_arg, int current_arg_tmp, const char **fmt, va_list *vl, const char *err_fmt)
{
 switch (*(*fmt)++) {

 case 'b': { /* unsigned byte -- very short int */
 char *output = va_arg(*vl, char *);
 _BREAK_IF_OPTIONAL(current_arg);
 long value = HPyLong_AsLong(ctx, current_arg);
 if (value == -1 && HPyErr_Occurred(ctx))
 return 0;
 if (value < 0) {
 set_error(ctx, ctx->h_OverflowError, err_fmt,
 "unsigned byte integer is less than minimum");
 return 0;
 }
 if (value > UCHAR_MAX) {
 set_error(ctx, ctx->h_OverflowError, err_fmt,
 "unsigned byte integer is greater than maximum");
 return 0;
 }
 *output = (char) value;
 break;
 }

 case 'B': { /* byte sized bitfield - both signed and unsigned
 values allowed */
 char *output = va_arg(*vl, char *);
 _BREAK_IF_OPTIONAL(current_arg);
 unsigned long value = HPyLong_AsUnsignedLongMask(ctx, current_arg);
 if (value == (unsigned long)-1 && HPyErr_Occurred(ctx))
 return 0;
 *output = (unsigned char) value;
 break;
 }

 case 'h': { /* signed short int */
 short *output = va_arg(*vl, short *);
 _BREAK_IF_OPTIONAL(current_arg);
 long value = HPyLong_AsLong(ctx, current_arg);
 if (value == -1 && HPyErr_Occurred(ctx))
 return 0;
 if (value < SHRT_MIN) {
 set_error(ctx, ctx->h_OverflowError, err_fmt,
 "signed short integer is less than minimum");
 return 0;
 }
 if (value > SHRT_MAX) {
 set_error(ctx, ctx->h_OverflowError, err_fmt,
 "signed short integer is greater than maximum");
 return 0;
 }
 *output = (short) value;
 break;
 }

 case 'H': { /* short int sized bitfield, both signed and
 unsigned allowed */
 unsigned short *output = va_arg(*vl, unsigned short *);
 _BREAK_IF_OPTIONAL(current_arg);
 unsigned long value = HPyLong_AsUnsignedLongMask(ctx, current_arg);
 if (value == (unsigned long)-1 && HPyErr_Occurred(ctx))
 return 0;
 *output = (unsigned short) value;
 break;
 }

 case 'i': { /* signed int */
 int *output = va_arg(*vl, int *);
 _BREAK_IF_OPTIONAL(current_arg);
 long value = HPyLong_AsLong(ctx, current_arg);
 if (value == -1 && HPyErr_Occurred(ctx))
 return 0;
 if (value > INT_MAX) {
 set_error(ctx, ctx->h_OverflowError, err_fmt,
 "signed integer is greater than maximum");
 return 0;
 }
 if (value < INT_MIN) {
 set_error(ctx, ctx->h_OverflowError, err_fmt,
 "signed integer is less than minimum");
 return 0;
 }
 *output = (int)value;
 break;
 }

 case 'I': { /* int sized bitfield, both signed and
 unsigned allowed */
 unsigned int *output = va_arg(*vl, unsigned int *);
 _BREAK_IF_OPTIONAL(current_arg);
 unsigned long value = HPyLong_AsUnsignedLongMask(ctx, current_arg);
 if (value == (unsigned long)-1 && HPyErr_Occurred(ctx))
 return 0;
 *output = (unsigned int) value;
 break;
 }

 case 'l': {
 long *output = va_arg(*vl, long *);
 _BREAK_IF_OPTIONAL(current_arg);
 long value = HPyLong_AsLong(ctx, current_arg);
 if (value == -1 && HPyErr_Occurred(ctx))
 return 0;
 *output = value;
 break;
 }

 case 'k': { /* long sized bitfield */
 unsigned long *output = va_arg(*vl, unsigned long *);
 _BREAK_IF_OPTIONAL(current_arg);
 unsigned long value = HPyLong_AsUnsignedLongMask(ctx, current_arg);
 if (value == (unsigned long)-1 && HPyErr_Occurred(ctx))
 return 0;
 *output = value;
 break;
 }

 case 'L': { /* long long */
 long long *output = va_arg(*vl, long long *);
 _BREAK_IF_OPTIONAL(current_arg);
 long long value = HPyLong_AsLongLong(ctx, current_arg);
 if (value == (long long)-1 && HPyErr_Occurred(ctx))
 return 0;
 *output = value;
 break;
 }

 case 'K': { /* long long sized bitfield */
 unsigned long long *output = va_arg(*vl, unsigned long long *);
 _BREAK_IF_OPTIONAL(current_arg);
 unsigned long long value = HPyLong_AsUnsignedLongLongMask(ctx, current_arg);
 if (value == (unsigned long long)-1 && HPyErr_Occurred(ctx))
 return 0;
 *output = value;
 break;
 }

 case 'n': { /* HPy_ssize_t */
 HPy_ssize_t *output = va_arg(*vl, HPy_ssize_t *);
 _BREAK_IF_OPTIONAL(current_arg);
 HPy_ssize_t value = HPyLong_AsSsize_t(ctx, current_arg);
 if (value == (HPy_ssize_t)-1 && HPyErr_Occurred(ctx))
 return 0;
 *output = value;
 break;
 }

 case 'f': { /* float */
 float *output = va_arg(*vl, float *);
 _BREAK_IF_OPTIONAL(current_arg);
 double value = HPyFloat_AsDouble(ctx, current_arg);
 if (value == -1.0 && HPyErr_Occurred(ctx))
 return 0;
 *output = (float) value;
 break;
 }

 case 'd': { /* double */
 double* output = va_arg(*vl, double *);
 _BREAK_IF_OPTIONAL(current_arg);
 double value = HPyFloat_AsDouble(ctx, current_arg);
 if (value == -1.0 && HPyErr_Occurred(ctx))
 return 0;
 *output = value;
 break;
 }

 case 'O': {
 HPy *output = va_arg(*vl, HPy *);
 _BREAK_IF_OPTIONAL(current_arg);
 if (current_arg_tmp) {
 *output = HPy_Dup(ctx, current_arg);
 HPyTracker_Add(ctx, *ht, *output);
 }
 else {
 *output = current_arg;
 }
 break;
 }

 case 'p': { /* boolean *p*redicate */
 int *output = va_arg(*vl, int *);
 int value = HPy_IsTrue(ctx, current_arg);
 if (value < 0)
 return 0;
 *output = (value > 0) ? 1 : 0;
 break;
 }

 case 's': {
 const char **output = va_arg(*vl, const char **);
 if (!HPyUnicode_Check(ctx, current_arg)) {
 set_error(ctx, ctx->h_TypeError, err_fmt, "a str is required");
 return 0;
 }
 HPy_ssize_t size;
 const char *data = HPyUnicode_AsUTF8AndSize(ctx, current_arg, &size);
 if (data == NULL) {
 set_error(ctx, ctx->h_SystemError, err_fmt, "unicode conversion error");
 return 0;
 }
 // loop bounded by size is more robust/paranoid than strlen
 HPy_ssize_t i;
 for (i = 0; i < size; ++i) {
 if (data[i] == '\0') {
 set_error(ctx, ctx->h_ValueError, err_fmt, "embedded null character");
 return 0;
 }
 }
 if (data[i] != '\0') {
 set_error(ctx, ctx->h_SystemError, err_fmt, "missing terminating null character");
 return 0;
 }
 *output = data;
 break;
 }

 default: {
 set_error(ctx, ctx->h_SystemError, err_fmt, "unknown arg format code");
 return 0;
 }

 } // switch

 return 1;
}

[docs]/**
 * Parse positional arguments.
 *
 * :param ctx:
 * The execution context.
 * :param ht:
 * An optional pointer to an HPyTracker. If the format string never
 * results in new handles being created, `ht` may be `NULL`. Currently
 * no formatting options to this function require an HPyTracker.
 * :param args:
 * The array of positional arguments to parse.
 * :param nargs:
 * The number of elements in args.
 * :param fmt:
 * The format string to use to parse the arguments.
 * :param ...:
 * A va_list of references to variables in which to store the parsed
 * arguments. The number and types of the arguments should match the
 * the format strint, `fmt`.
 *
 * :returns: 0 on failure, 1 on success.
 *
 * If a `NULL` pointer is passed to `ht` and an `HPyTracker` is required by
 * the format string, an exception will be raised.
 *
 * If a pointer is provided to `ht`, the `HPyTracker` will always be created
 * and must be closed with `HPyTracker_Close` if parsing succeeds (after all
 * handles returned are no longer needed). If parsing fails, this function
 * will close the `HPyTracker` automatically.
 *
 * Examples:
 *
 * Using `HPyArg_Parse` without an `HPyTracker`:
 *
 * .. code-block:: c
 *
 * long a, b;
 * if (!HPyArg_Parse(ctx, NULL, args, nargs, "ll", &a, &b))
 * return HPy_NULL;
 * ...
 *
 * Using `HPyArg_Parse` with an `HPyTracker`:
 *
 * .. code-block:: c
 *
 * long a, b;
 * HPyTracker ht;
 * if (!HPyArg_Parse(ctx, &ht, args, nargs, "ll", &a, &b))
 * return HPy_NULL;
 * ...
 * HPyTracker_Close(ctx, ht);
 * ...
 *
 * .. note::
 *
 * Currently `HPyArg_Parse` never requires the use of an `HPyTracker`.
 * The option exists only to support releasing temporary storage used by
 * future format string codes (e.g. for character strings).
 */
 int
HPyArg_Parse(HPyContext *ctx, HPyTracker *ht, HPy *args, HPy_ssize_t nargs, const char *fmt, ...)
{
 const char *fmt1 = fmt;
 const char *err_fmt = NULL;
 const char *fmt_end = NULL;

 int optional = 0;
 HPy_ssize_t i = 0;
 HPy current_arg;

 fmt_end = parse_err_fmt(fmt, &err_fmt);

 if (ht != NULL) {
 *ht = HPyTracker_New(ctx, 0);
 if (HPy_IsNull(*ht)) {
 return 0;
 }
 }

 va_list vl;
 va_start(vl, fmt);

 while (fmt1 != fmt_end) {
 if (*fmt1 == '|') {
 optional = 1;
 fmt1++;
 continue;
 }
 current_arg = HPy_NULL;
 if (i < nargs) {
 current_arg = args[i];
 }
 if (!HPy_IsNull(current_arg) || optional) {
 if (!parse_item(ctx, ht, current_arg, 0, &fmt1, &vl, err_fmt)) {
 goto error;
 }
 }
 else {
 set_error(ctx, ctx->h_TypeError, err_fmt,
 "required positional argument missing");
 goto error;
 }
 i++;
 }
 if (i < nargs) {
 set_error(ctx, ctx->h_TypeError, err_fmt,
 "mismatched args (too many arguments for fmt)");
 goto error;
 }

 va_end(vl);
 return 1;

 error:
 va_end(vl);
 if (ht != NULL) {
 HPyTracker_Close(ctx, *ht);
 }
 return 0;
}

[docs]/**
 * Parse positional and keyword arguments.
 *
 * :param ctx:
 * The execution context.
 * :param ht:
 * An optional pointer to an HPyTracker. If the format string never
 * results in new handles being created, `ht` may be `NULL`. Currently
 * only the `O` formatting option to this function requires an HPyTracker.
 * :param args:
 * The array of positional arguments to parse.
 * :param nargs:
 * The number of elements in args.
 * :param kw:
 * A handle to the dictionary of keyword arguments.
 * :param fmt:
 * The format string to use to parse the arguments.
 * :param keywords:
 * An `NULL` terminated array of argument names. The number of names
 * should match the format string provided. Positional only arguments
 * should have the name `""` (i.e. the null-terminated empty string).
 * Positional only arguments must preceded all other arguments.
 * :param ...:
 * A va_list of references to variables in which to store the parsed
 * arguments. The number and types of the arguments should match the
 * the format strint, `fmt`.
 *
 * :returns: 0 on failure, 1 on success.
 *
 * If a `NULL` pointer is passed to `ht` and an `HPyTracker` is required by
 * the format string, an exception will be raised.
 *
 * If a pointer is provided to `ht`, the `HPyTracker` will always be created
 * and must be closed with `HPyTracker_Close` if parsing succeeds (after all
 * handles returned are no longer needed). If parsing fails, this function
 * will close the `HPyTracker` automatically.
 *
 * Examples:
 *
 * Using `HPyArg_ParseKeywords` without an `HPyTracker`:
 *
 * .. code-block:: c
 *
 * long a, b;
 * if (!HPyArg_ParseKeywords(ctx, NULL, args, nargs, kw, "ll", &a, &b))
 * return HPy_NULL;
 * ...
 *
 * Using `HPyArg_ParseKeywords` with an `HPyTracker`:
 *
 * .. code-block:: c
 *
 * HPy a, b;
 * HPyTracker ht;
 * if (!HPyArg_ParseKeywords(ctx, &ht, args, nargs, kw, "OO", &a, &b))
 * return HPy_NULL;
 * ...
 * HPyTracker_Close(ctx, ht);
 * ...
 *
 * .. note::
 *
 * Currently `HPyArg_ParseKeywords` only requires the use of an `HPyTracker`
 * when the `O` format is used. In future other new format string codes
 * (e.g. for character strings) may also require it.
 */
 int
HPyArg_ParseKeywords(HPyContext *ctx, HPyTracker *ht, HPy *args, HPy_ssize_t nargs, HPy kw,
 const char *fmt, const char *keywords[], ...)
{
 const char *fmt1 = fmt;
 const char *err_fmt = NULL;
 const char *fmt_end = NULL;

 int optional = 0;
 int keyword_only = 0;
 HPy_ssize_t i = 0;
 HPy_ssize_t nkw = 0;
 HPy current_arg;
 int current_arg_needs_closing = 0;

 fmt_end = parse_err_fmt(fmt, &err_fmt);

 // first count positional only arguments
 while (keywords[nkw] != NULL && !*keywords[nkw]) {
 nkw++;
 }
 // then check and count the rest
 while (keywords[nkw] != NULL) {
 if (!*keywords[nkw]) {
 set_error(ctx, ctx->h_SystemError, err_fmt,
 "empty keyword parameter name");
 return 0;
 }
 nkw++;
 }

 if (ht != NULL) {
 *ht = HPyTracker_New(ctx, 0);
 if (HPy_IsNull(*ht)) {
 return 0;
 }
 }

 va_list vl;
 va_start(vl, keywords);

 while (fmt1 != fmt_end) {
 if (*fmt1 == '|') {
 optional = 1;
 fmt1++;
 continue;
 }
 if (*fmt1 == '$') {
 optional = 1;
 keyword_only = 1;
 fmt1++;
 continue;
 }
 if (*fmt1 == 'O' && ht == NULL) {
 set_error(ctx, ctx->h_SystemError, err_fmt,
 "HPyArg_ParseKeywords cannot use the format character 'O' unless"
 " an HPyTracker is provided. Please supply an HPyTracker.");
 goto error;
 }
 if (i >= nkw) {
 set_error(ctx, ctx->h_TypeError, err_fmt,
 "mismatched args (too few keywords for fmt)");
 goto error;
 }
 current_arg = HPy_NULL;
 if (i < nargs) {
 if (keyword_only) {
 set_error(ctx, ctx->h_TypeError, err_fmt,
 "keyword only argument passed as positional argument");
 goto error;
 }
 current_arg = args[i];
 }
 else if (!HPy_IsNull(kw) && *keywords[i]) {
 current_arg = HPy_GetItem_s(ctx, kw, keywords[i]);
 // Track the handle or lear any KeyError that was raised. If an
 // error was raised current_arg will be HPy_NULL and will be
 // handled appropriately below depending on whether the current
 // argument is optional or not
 if (!HPy_IsNull(current_arg)) {
 current_arg_needs_closing = 1;
 }
 else {
 HPyErr_Clear(ctx);
 }
 }
 if (!HPy_IsNull(current_arg) || optional) {
 if (!parse_item(ctx, ht, current_arg, 1, &fmt1, &vl, err_fmt)) {
 goto error;
 }
 }
 else {
 set_error(ctx, ctx->h_TypeError, err_fmt,
 "no value for required argument");
 goto error;
 }
 if (current_arg_needs_closing) {
 HPy_Close(ctx, current_arg);
 current_arg_needs_closing = 0;
 }
 i++;
 }
 if (i != nkw) {
 set_error(ctx, ctx->h_TypeError, err_fmt,
 "mismatched args (too many keywords for fmt)");
 goto error;
 }

 va_end(vl);
 return 1;

 error:
 va_end(vl);
 if (ht != NULL) {
 HPyTracker_Close(ctx, *ht);
 }
 if (current_arg_needs_closing) {
 HPy_Close(ctx, current_arg);
 }
 return 0;
}

 runtime/buildvalue.c

 Source code for runtime/buildvalue.c

/**
 * Implementation of HPy_BuildValue.
 *
 * Note: HPy_BuildValue is a runtime helper functions, i.e., it is not a part
 * of the HPy context, but is available to HPy extensions to incorporate at
 * compile time.
 *
 * HPy_BuildValue creates a new value based on a format string from the values
 * passed in variadic arguments. Returns HPy_NULL in case of an error and raises
 * an exception.
 *
 * HPy_BuildValue does not always build a tuple. It builds a tuple only if its format
 * string contains two or more format units. If the format string is empty, it returns
 * None; if it contains exactly one format unit, it returns whatever object is described
 * by that format unit. To force it to return a tuple of size 0 or one, parenthesize the
 * format string.
 *
 * Building complex values with HPy_BuildValue is more convenient than the equivalent
 * code that uses more granular APIs with proper error handling and cleanup. Moreover,
 * HPy_BuildValue provides straightforward way to port existing code that uses
 * Py_BuildValue.
 *
 * HPy_BuildValue always returns a new handle that will be owned by the caller. Even
 * an artificial example 'HPy_BuildValue(ctx, "O", h)' does not simply forward
 * the value stored in 'h' but duplicates the handle.
 *
 * Supported Formatting Strings
 * ----------------------------
 *
 * Numbers
 * ~~~~~~~
 *
 * ``i (int) [int]``
 * Convert a plain C int to a Python integer object.
 *
 * ``l (int) [long int]``
 * Convert a C long int to a Python integer object.
 *
 * ``I (int) [unsigned int]``
 * Convert a C unsigned int to a Python integer object.
 *
 * ``k (int) [unsigned long]``
 * Convert a C unsigned long to a Python integer object.
 *
 * ``L (int) [long long]``
 * Convert a C long long to a Python integer object.
 *
 * ``K (int) [unsigned long long]``
 * Convert a C unsigned long long to a Python integer object.
 *
 * ``f (float) [float]``
 * Convert a C float to a Python floating point number.
 *
 * ``d (float) [double]``
 * Convert a C double to a Python floating point number.
 *
 * Collections
 * ~~~~~~~~~~~
 *
 * ``(items) (tuple) [matching-items]``
 * Convert a sequence of C values to a Python tuple with the same number of items.
 *
 * ``[items] (list) [matching-items]``
 * Convert a sequence of C values to a Python list with the same number of items.
 *
 * ``{key:value} (dict) [matching-items]``
 * Convert a sequence of C values to a Python dict with the same number of items.
 *
 * Misc
 * ~~~~~~~
 *
 * ``O (Python object) [HPy]``
 * Pass an untouched Python object represented by the handle.
 *
 * If the object passed in is a HPy_NULL, it is assumed that this was caused because
 * the call producing the argument found an error and set an exception. Therefore,
 * HPy_BuildValue will also immediately stop and return HPy_NULL but will not raise
 * any new exception. If no exception has been raised yet, SystemError is set.
 *
 * Any HPy handle passed to HPy_BuildValue is always owned by the caller. HPy_BuildValue
 * never closes the handle nor transfers its ownership. If the handle is used, then
 * HPy_BuildValue creates a duplicate of the handle.
 *
 * ``S (Python object) [HPy]``
 * Alias for 'O'.
 *
 * API
 * ---
 *
 */

#include "hpy.h"
#include <stdarg.h>
#include <stdio.h>

#define MESSAGE_BUF_SIZE 128

static HPy_ssize_t count_items(HPyContext *ctx, const char *fmt, char end);
static HPy build_tuple(HPyContext *ctx, const char **fmt, va_list *values, HPy_ssize_t size, char expected_end);
static HPy build_list(HPyContext *ctx, const char **fmt, va_list *values, HPy_ssize_t size);
static HPy build_dict(HPyContext *ctx, const char **fmt, va_list *values);
static HPy build_single(HPyContext *ctx, const char **fmt, va_list *values, int *needs_close);

HPy HPy_BuildValue(HPyContext *ctx, const char *fmt, ...)
{
 va_list values;
 HPy result;
 va_start(values, fmt);
 HPy_ssize_t size = count_items(ctx, fmt, '\0');
 if (size < 0) {
 result = HPy_NULL;
 } else if (size == 0) {
 result = HPy_Dup(ctx, ctx->h_None);
 } else if (size == 1) {
 int needs_close;
 result = build_single(ctx, &fmt, &values, &needs_close);
 if (!needs_close) {
 result = HPy_Dup(ctx, result);
 }
 } else {
 result = build_tuple(ctx, &fmt, &values, size, '\0');
 }
 va_end(values);
 return result;
}

static HPy_ssize_t count_items(HPyContext *ctx, const char *fmt, char end)
{
 HPy_ssize_t level = 0, result = 0;
 char top_level_par = 'X';
 while (level != 0 || *fmt != end) {
 char c = *fmt++;
 switch (c) {
 case '\0': {
 // Premature end
 // We try to provide slightly better diagnostics than CPython
 char msg[MESSAGE_BUF_SIZE];
 char par_type;
 if (end == ')') {
 par_type = '(';
 } else if (end == ']') {
 par_type = '[';
 } else if (end == '}') {
 par_type = '{';
 } else {
 if (level == 0 || top_level_par == 'X') {
 HPyErr_SetString(ctx, ctx->h_SystemError, "internal error in HPy_BuildValue");
 return -1;
 }
 par_type = top_level_par;
 }
 snprintf(msg, MESSAGE_BUF_SIZE, "unmatched '%c' in the format string passed to HPy_BuildValue", par_type);
 HPyErr_SetString(ctx, ctx->h_SystemError, msg);
 return -1;
 }

 case '[':
 case '(':
 case '{':
 if (level == 0) {
 top_level_par = c;
 result++;
 }
 level++;
 break;

 case ']':
 case ')':
 case '}':
 level--;
 break;

 case ',':
 case ' ':
 break;

 default:
 if (level == 0) {
 result++;
 }
 }
 }
 return result;
}

static HPy build_single(HPyContext *ctx, const char **fmt, va_list *values, int *needs_close)
{
 char format_char = *(*fmt)++;
 *needs_close = 1;
 switch (format_char) {
 case '(': {
 HPy_ssize_t size = count_items(ctx, *fmt, ')');
 if (size < 0) {
 return HPy_NULL;
 }
 return build_tuple(ctx, fmt, values, size, ')');
 }

 case '[': {
 HPy_ssize_t size = count_items(ctx, *fmt, ']');
 if (size < 0) {
 return HPy_NULL;
 }
 return build_list(ctx, fmt, values, size);
 }

 case '{': {
 return build_dict(ctx, fmt, values);
 }

 case 'i':
 return HPyLong_FromLong(ctx, (long)va_arg(*values, int));

 case 'I':
 return HPyLong_FromUnsignedLong(ctx, (unsigned long)va_arg(*values, unsigned int));

 case 'k':
 return HPyLong_FromUnsignedLong(ctx, va_arg(*values, unsigned long));

 case 'l':
 return HPyLong_FromLong(ctx, va_arg(*values, long));

 case 'L':
 return HPyLong_FromLongLong(ctx, va_arg(*values, long long));

 case 'K':
 return HPyLong_FromUnsignedLongLong(ctx, va_arg(*values, unsigned long long));

 case 's':
 return HPyUnicode_FromString(ctx, va_arg(*values, const char*));

 case 'O':
 case 'S': {
 HPy handle = va_arg(*values, HPy);
 if (HPy_IsNull(handle)) {
 if (!HPyErr_Occurred(ctx)) {
 HPyErr_SetString(ctx, ctx->h_SystemError, "HPy_NULL object passed to HPy_BuildValue");
 }
 return handle;
 }
 *needs_close = 0;
 return handle;
 }

 case 'N': {
 HPyErr_SetString(ctx, ctx->h_SystemError,
 "HPy_BuildValue does not support the 'N' formatting unit. "
 "Instead, use the 'O' formatting unit and manually close "
 "the handle in the caller if necessary. HPy API functions "
 "never 'steal' handles and always make a duplicate handle if "
 "needed, the 'ownership' of the original handle is never "
 "'transferred'. ");
 return HPy_NULL;
 }

 case 'f': // Note: floats are promoted to doubles when passed in "..."
 case 'd':
 return HPyFloat_FromDouble(ctx, va_arg(*values, double));

 default: {
 char message[MESSAGE_BUF_SIZE];
 snprintf(message, MESSAGE_BUF_SIZE, "bad format char '%c' in the format string passed to HPy_BuildValue", format_char);
 HPyErr_SetString(ctx, ctx->h_SystemError, message);
 return HPy_NULL;
 }
 } // switch
}

static HPy build_dict(HPyContext *ctx, const char **fmt, va_list *values)
{
 HPy dict = HPyDict_New(ctx);
 int expect_comma = 0;
 while (**fmt != '}' && **fmt != '\0') {
 if (**fmt == ' ') {
 (*fmt)++;
 continue;
 }
 if (**fmt == ',') {
 if (!expect_comma) {
 HPyErr_SetString(ctx, ctx->h_SystemError,
 "unexpected ',' in the format string passed to HPy_BuildValue");
 HPy_Close(ctx, dict);
 return HPy_NULL;
 }
 (*fmt)++;
 expect_comma = 0;
 continue;
 } else {
 if (expect_comma) {
 HPyErr_SetString(ctx, ctx->h_SystemError,
 "missing ',' in the format string passed to HPy_BuildValue");
 HPy_Close(ctx, dict);
 return HPy_NULL;
 }
 }
 int needs_key_close, needs_value_close;
 HPy key = build_single(ctx, fmt, values, &needs_key_close);
 if (HPy_IsNull(key)) {
 HPy_Close(ctx, dict);
 return HPy_NULL;
 }
 if (**fmt != ':') {
 HPyErr_SetString(ctx, ctx->h_SystemError,
 "missing ':' in the format string passed to HPy_BuildValue");
 if (needs_key_close) {
 HPy_Close(ctx, key);
 }
 HPy_Close(ctx, dict);
 return HPy_NULL;
 } else {
 (*fmt)++;
 }
 HPy value = build_single(ctx, fmt, values, &needs_value_close);
 if (HPy_IsNull(value)) {
 if (needs_key_close) {
 HPy_Close(ctx, key);
 }
 HPy_Close(ctx, dict);
 return HPy_NULL;
 }
 int res = HPy_SetItem(ctx, dict, key, value);
 if (needs_key_close) {
 HPy_Close(ctx, key);
 }
 if (needs_value_close) {
 HPy_Close(ctx, value);
 }
 if (res < 0) {
 HPy_Close(ctx, dict);
 return HPy_NULL;
 }

 expect_comma = 1;
 }
 if (**fmt != '}') {
 // count_items does not check the type of the matching paren, that's what we do here
 HPy_Close(ctx, dict);
 HPyErr_SetString(ctx, ctx->h_SystemError,
 "unmatched '{' in the format string passed to HPy_BuildValue");
 return HPy_NULL;
 }
 ++*fmt;
 return dict;
}

static HPy build_list(HPyContext *ctx, const char **fmt, va_list *values, HPy_ssize_t size)
{
 HPyListBuilder builder = HPyListBuilder_New(ctx, size);
 for (HPy_ssize_t i = 0; i < size; ++i) {
 int needs_close;
 HPy item = build_single(ctx, fmt, values, &needs_close);
 if (HPy_IsNull(item)) {
 HPyListBuilder_Cancel(ctx, builder);
 return HPy_NULL;
 }
 HPyListBuilder_Set(ctx, builder, i, item);
 if (needs_close) {
 HPy_Close(ctx, item);
 }
 if (**fmt == ',') {
 (*fmt)++;
 }
 }
 if (**fmt != ']') {
 // count_items does not check the type of the matching paren, that's what we do here
 HPyListBuilder_Cancel(ctx, builder);
 HPyErr_SetString(ctx, ctx->h_SystemError,
 "unmatched '[' in the format string passed to HPy_BuildValue");
 return HPy_NULL;
 }
 ++*fmt;
 return HPyListBuilder_Build(ctx, builder);
}

static HPy build_tuple(HPyContext *ctx, const char **fmt, va_list *values, HPy_ssize_t size, char expected_end)
{
 HPyTupleBuilder builder = HPyTupleBuilder_New(ctx, size);
 for (HPy_ssize_t i = 0; i < size; ++i) {
 int needs_close;
 HPy item = build_single(ctx, fmt, values, &needs_close);
 if (HPy_IsNull(item)) {
 HPyTupleBuilder_Cancel(ctx, builder);
 return HPy_NULL;
 }
 HPyTupleBuilder_Set(ctx, builder, i, item);
 if (needs_close) {
 HPy_Close(ctx, item);
 }
 if (**fmt == ',') {
 (*fmt)++;
 }
 }
 if (**fmt != expected_end) {
 // count_items does not check the type of the matching paren, that's what we do here
 // if expected_end == '\0', then there would have to be a bug in count_items
 HPyTupleBuilder_Cancel(ctx, builder);
 if (expected_end == '\0') {
 HPyErr_SetString(ctx, ctx->h_SystemError, "internal error in HPy_BuildValue");
 } else {
 HPyErr_SetString(ctx, ctx->h_SystemError,
 "unmatched '[' in the format string passed to HPy_BuildValue");
 }
 return HPy_NULL;
 }
 if (expected_end != '\0') {
 ++*fmt;
 }
 return HPyTupleBuilder_Build(ctx, builder);
}

 runtime/helpers.c

 Source code for runtime/helpers.c

/**
 * Runtime helper functions.
 *
 * These are not part of the HPy context or ABI, but are available for
 * HPy extensions to incorporate at compile time.
 *
 * Runtime Helpers API
 * -------------------
 *
 */

#include "hpy.h"

[docs]/**
 * Create a type and add it as an attribute on the given object. The type is
 * created using `HPyType_FromSpec`. The object is often a module that the type
 * is being added to.
 *
 * :param ctx:
 * The execution context.
 * :param obj:
 * A handle to the object the type is being added to (often a module).
 * :param name:
 * The name of the attribute on the object to assign the type to.
 * :param hpyspec:
 * The type spec to use to create the type.
 * :param params:
 * The type spec parameters to use to create the type.
 *
 * :returns: 0 on failure, 1 on success.
 *
 * Examples:
 *
 * Using `HPyHelpers_AddType` without any `HPyType_SpecParam` parameters:
 *
 * .. code-block:: c
 *
 * if (!HPyHelpers_AddType(ctx, module, "MyType", hpyspec, NULL))
 * return HPy_NULL;
 * ...
 *
 * Using `HPyHelpers_AddType` with `HPyType_SpecParam` parameters:
 *
 * .. code-block:: c
 *
 * HPyType_SpecParam params[] = {
 * { HPyType_SpecParam_Base, ctx->h_LongType },
 * { 0 }
 * };
 *
 * if (!HPyHelpers_AddType(ctx, module, "MyType", hpyspec, params))
 * return HPy_NULL;
 * ...
 */
 int
HPyHelpers_AddType(HPyContext *ctx, HPy obj, const char *name,
 HPyType_Spec *hpyspec, HPyType_SpecParam *params)
{
 HPy h_type = HPyType_FromSpec(ctx, hpyspec, params);
 if (HPy_IsNull(h_type)) {
 return 0;
 }
 if (HPy_SetAttr_s(ctx, obj, name, h_type) != 0) {
 HPy_Close(ctx, h_type);
 return 0;
 }
 HPy_Close(ctx, h_type);
 return 1;
}

 step_00_c_api.c

step_00_c_api.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

	#include <math.h>
#include <Python.h>

// Porting to HPy, Step 0: Original Python C API version
//
// An example of porting a C extension that implements a Point type
// with a couple of simple methods (a norm and a dot product). It
// illustrates the steps needed to port types that contain additional
// C attributes (in this case, x and y).
//
// This file contains the original C API version that needs to be ported.
//
// HPy supports porting C extensions piece by piece.
//
// point_hpy_legacy_1.c illustrates a possible first step where all
// methods still receive PyObject arguments and may still cast them to
// PyPointObject if they are instances of Point.
//
// point_hpy_legacy_2.c shows how to transition some methods to HPy methods
// that receive HPy handles as arguments while still supporting legacy
// methods that receive PyObject arguments.
//
// point_hpy_final.c shows the completed port to HPy where all methods receive
// HPy handles and PyObject_HEAD has been removed.

typedef struct {
 PyObject_HEAD
 double x;
 double y;
 PyObject *obj;
} PyPointObject;

int Point_traverse(PyObject *self, visitproc visit, void *arg)
{
 Py_VISIT(((PyPointObject*)self)->obj);
 Py_VISIT(Py_TYPE(self));
 return 0;
}

void Point_dealloc(PyObject *self)
{
 Py_CLEAR(((PyPointObject*)self)->obj);
 PyTypeObject *tp = Py_TYPE(self);
 tp->tp_free(self);
 Py_DECREF(tp);
}

// this is a method for creating a Point
int Point_init(PyObject *self, PyObject *args, PyObject *kw)
{
 static char *kwlist[] = {"x", "y", "obj", NULL};
 PyPointObject *p = (PyPointObject *)self;
 p->x = 0.0;
 p->y = 0.0;
 p->obj = NULL;
 if (!PyArg_ParseTupleAndKeywords(args, kw, "|ddO", kwlist,
 &p->x, &p->y, &p->obj))
 return -1;
 if (p->obj == NULL)
 p->obj = Py_None;
 Py_INCREF(p->obj);
 return 0;
}

// this is a method of Point
PyObject* Point_norm(PyObject *self)
{
 PyPointObject *p = (PyPointObject *)self;
 double norm;
 PyObject *result;
 norm = sqrt(p->x * p->x + p->y * p->y);
 result = PyFloat_FromDouble(norm);
 return result;
}

// this is the getter for the associated object
PyObject* Point_obj_get(PyObject *self, void *context)
{
 PyPointObject *p = (PyPointObject *)self;
 Py_INCREF(p->obj);
 return p->obj;
}

// this is an unrelated function which happens to cast a PyObject* into a
// PyPointObject*
PyObject* dot(PyObject *self, PyObject *args)
{
 PyObject *point1, *point2;
 if (!PyArg_ParseTuple(args, "OO", &point1, &point2))
 return NULL;

 PyPointObject *p1 = (PyPointObject *)point1;
 PyPointObject *p2 = (PyPointObject *)point2;

 double dp;
 PyObject *result;
 dp = p1->x * p2->x + p1->y * p2->y;
 result = PyFloat_FromDouble(dp);
 return result;
}

// Method, type and module definitions. These will be updated to add HPy
// module support in point_hpy_legacy_1.c.

static PyMethodDef PointMethods[] = {
 {"norm", (PyCFunction)Point_norm, METH_NOARGS, "Distance from origin."},
 {NULL, NULL, 0, NULL}
};

static PyGetSetDef PointGetSets[] = {
 {"obj", (getter)Point_obj_get, NULL, "Associated object.", NULL},
 {NULL, NULL, 0, NULL}
};

static PyType_Slot Point_slots[] = {
 {Py_tp_doc, "Point (Step 0; C API implementation)"},
 {Py_tp_init, Point_init},
 {Py_tp_methods, PointMethods},
 {Py_tp_getset, PointGetSets},
 {Py_tp_traverse, Point_traverse},
 {Py_tp_dealloc, Point_dealloc},
 {0, 0}
};

static PyType_Spec Point_Type_spec = {
 .name = "point_capi.Point",
 .basicsize = sizeof(PyPointObject),
 .itemsize = 0,
 .flags = Py_TPFLAGS_DEFAULT,
 .slots = Point_slots
};

static PyMethodDef PointModuleMethods[] = {
 {"dot", (PyCFunction)dot, METH_VARARGS, "Dot product."},
 {NULL, NULL, 0, NULL}
};

static struct PyModuleDef moduledef = {
 PyModuleDef_HEAD_INIT,
 "step_00_c_api",
 "Point module (Step 0; C API implementation)",
 -1,
 PointModuleMethods,
 NULL,
 NULL,
 NULL,
 NULL,
};

PyMODINIT_FUNC
PyInit_step_00_c_api(void)
{
 PyObject* m;
 m = PyModule_Create(&moduledef);
 if (m == NULL)
 return NULL;

 PyObject *point_type = PyType_FromSpec(&Point_Type_spec);
 if (point_type == NULL)
 return NULL;
 PyModule_AddObject(m, "Point", point_type);

 return m;
}

 step_01_hpy_legacy.c

step_01_hpy_legacy.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

	#include <math.h>
#include <Python.h>
#include <hpy.h>

// Porting to HPy, Step 1: All legacy methods
//
// An example of porting a C extension that implements a Point type
// with a couple of simple methods (a norm and a dot product). It
// illustrates the steps needed to port types that contain additional
// C attributes (in this case, x and y).
//
// This file contains an example first step of the port in which all methods
// still receive PyObject arguments and may still cast them to
// PyPointObject if they are instances of Point.

typedef struct {
 // PyObject_HEAD is required while legacy_slots are still used
 // but can (and should) be removed once the port to HPy is completed.
 PyObject_HEAD
 double x;
 double y;
 PyObject *obj;
} PointObject;

// This defines PyPointObject as an alias of PointObject so that existing
// code that still uses PyPointObject and expects PyObject_HEAD continues to
// compile and run. Once PyObject_HEAD has been removed, this alias should be
// removed so that code that still expects PyObject_HEAD will fail to compile.
typedef PointObject PyPointObject;

// The legacy type helper macro defines an PointObject_AsStruct function allows
// non-legacy methods to convert HPy handles to PointObject structs. It is not
// used in this file, but is provided so that methods can start to be ported
// (see point_hpy_legacy_2.c). The legacy type helper macro is used because
// PyObject_HEAD is still present in PointObject. Once PyObject_HEAD has been
// removed (see point_hpy_final.c) we will use HPy_TYPE_HELPERS instead.
HPyType_LEGACY_HELPERS(PointObject)

int Point_traverse(PyObject *self, visitproc visit, void *arg)
{
 Py_VISIT(((PyPointObject*)self)->obj);
 Py_VISIT(Py_TYPE(self));
 return 0;
}

void Point_dealloc(PyObject *self)
{
 Py_CLEAR(((PyPointObject*)self)->obj);
 PyTypeObject *tp = Py_TYPE(self);
 tp->tp_free(self);
 Py_DECREF(tp);
}

// this is a method for creating a Point
int Point_init(PyObject *self, PyObject *args, PyObject *kw)
{
 static char *kwlist[] = {"x", "y", "obj", NULL};
 PyPointObject *p = (PyPointObject *)self;
 p->x = 0.0;
 p->y = 0.0;
 p->obj = NULL;
 if (!PyArg_ParseTupleAndKeywords(args, kw, "|ddO", kwlist,
 &p->x, &p->y, &p->obj))
 return -1;
 if (p->obj == NULL)
 p->obj = Py_None;
 Py_INCREF(p->obj);
 return 0;
}

// this is a LEGACY method of Point
PyObject* Point_norm(PyObject *self)
{
 PyPointObject *p = (PyPointObject *)self;
 double norm;
 norm = sqrt(p->x * p->x + p->y * p->y);
 return PyFloat_FromDouble(norm);
}

// this is the getter for the associated object
PyObject* Point_obj_get(PyObject *self, void *context)
{
 PyPointObject *p = (PyPointObject *)self;
 Py_INCREF(p->obj);
 return p->obj;
}

// this is an LEGACY function which casts a PyObject* into a PyPointObject*
PyObject* dot(PyObject *self, PyObject *args)
{
 PyObject *point1, *point2;
 if (!PyArg_ParseTuple(args, "OO", &point1, &point2))
 return NULL;

 PyPointObject *p1 = (PyPointObject *)point1;
 PyPointObject *p2 = (PyPointObject *)point2;

 double dp;
 dp = p1->x * p2->x + p1->y * p2->y;
 return PyFloat_FromDouble(dp);
}

// Method, type and module definitions. In this porting step, the module and
// type definitions have been ported to HPy, but the methods themselves
// remaining legacy methods.

// Legacy methods (all methods are still legacy methods)
static PyMethodDef PointMethods[] = {
 {"norm", (PyCFunction)Point_norm, METH_NOARGS, "Distance from origin."},
 {NULL, NULL, 0, NULL}
};

// Legacy getsets
static PyGetSetDef PointGetSets[] = {
 {"obj", (getter)Point_obj_get, NULL, "Associated object.", NULL},
 {NULL, NULL, 0, NULL}
};

// Legacy slots (all slots are still legacy slots)
static PyType_Slot Point_legacy_slots[] = {
 {Py_tp_doc, "Point (Step 1; All legacy methods)"},
 {Py_tp_init, Point_init},
 {Py_tp_methods, PointMethods},
 {Py_tp_getset, PointGetSets},
 {Py_tp_traverse, Point_traverse},
 {Py_tp_dealloc, Point_dealloc},
 {0, 0}
};

// HPy type methods and slots (no methods or slots have been ported yet)
static HPyDef *point_defines[] = {
 NULL
};

static HPyType_Spec Point_Type_spec = {
 .name = "point_hpy_legacy_1.Point",
 .basicsize = sizeof(PointObject),
 .itemsize = 0,
 .flags = HPy_TPFLAGS_DEFAULT,
 .builtin_shape = SHAPE(PointObject),
 .legacy_slots = Point_legacy_slots,
 .defines = point_defines,
};

// Legacy module methods (the "dot" method is still a PyCFunction)
static PyMethodDef PointModuleLegacyMethods[] = {
 {"dot", (PyCFunction)dot, METH_VARARGS, "Dot product."},
 {NULL, NULL, 0, NULL}
};

// HPy module methods (no methods have been ported yet)
static HPyDef *module_defines[] = {
 NULL
};

static HPyModuleDef moduledef = {
 .name = "step_01_hpy_legacy",
 .doc = "Point module (Step 1; All legacy methods)",
 .size = -1,
 .legacy_methods = PointModuleLegacyMethods,
 .defines = module_defines,
};

HPy_MODINIT(step_01_hpy_legacy)
static HPy init_step_01_hpy_legacy_impl(HPyContext *ctx)
{
 HPy m = HPyModule_Create(ctx, &moduledef);
 if (HPy_IsNull(m))
 return HPy_NULL;

 HPy point_type = HPyType_FromSpec(ctx, &Point_Type_spec, NULL);
 if (HPy_IsNull(point_type))
 return HPy_NULL;
 HPy_SetAttr_s(ctx, m, "Point", point_type);

 return m;
}

 step_02_hpy_legacy.c

step_02_hpy_legacy.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

	#include <math.h>
#include <Python.h>
#include <hpy.h>

// Porting to HPy, Step 2: Porting some methods
//
// An example of porting a C extension that implements a Point type
// with a couple of simple methods (a norm and a dot product). It
// illustrates the steps needed to port types that contain additional
// C attributes (in this case, x and y).
//
// This file contains an example second step of the port in which some methods
// have been converted to HPy methods that receive handles as arguments, but
// other methods are still legacy methods that receive PyObject arguments.

typedef struct {
 // PyObject_HEAD is required while legacy methods still access
 // PointObject and should be removed once the port to HPy is completed.
 PyObject_HEAD
 double x;
 double y;
 // HPy handles are shortlived to support all GC strategies
 // For that reason, PyObject* in C structs are replaced by HPyField
 HPyField obj;
} PointObject;

// This defines PyPointObject as an alias of PointObject so that existing
// code that still uses PyPointObject and expects PyObject_HEAD continues to
// compile and run. Once PyObject_HEAD has been removed, this alias should be
// removed so that code that still expects PyObject_HEAD will fail to compile.
typedef PointObject PyPointObject;

// The legacy type helper macro defines an PointObject_AsStruct function allows
// non-legacy methods to convert HPy handles to PointObject structs. The legacy
// type helper macro is used because PyObject_HEAD is still present in
// PointObject. Once PyObject_HEAD has been removed (see point_hpy_final.c) we
// will use HPy_TYPE_HELPERS instead.
HPyType_LEGACY_HELPERS(PointObject)

HPyDef_SLOT(Point_traverse, HPy_tp_traverse)
int Point_traverse_impl(void *self, HPyFunc_visitproc visit, void *arg)
{
 HPy_VISIT(&((PointObject*)self)->obj);
 return 0;
}

// this is a method for creating a Point
HPyDef_SLOT(Point_init, HPy_tp_init)
int Point_init_impl(HPyContext *ctx, HPy self, HPy *args, HPy_ssize_t nargs, HPy kw)
{
 static const char *kwlist[] = {"x", "y", "obj", NULL};
 PointObject *p = PointObject_AsStruct(ctx, self);
 p->x = 0.0;
 p->y = 0.0;
 HPy obj = HPy_NULL;
 HPyTracker ht;
 if (!HPyArg_ParseKeywords(ctx, &ht, args, nargs, kw, "|ddO", kwlist,
 &p->x, &p->y, &obj))
 return -1;
 if (HPy_IsNull(obj))
 obj = ctx->h_None;
 // INCREF not needed because HPyArg_ParseKeywords does not steal a reference
 HPyField_Store(ctx, self, &p->obj, obj);
 HPyTracker_Close(ctx, ht);
 return 0;
}

// this is the getter for the associated object
HPyDef_GET(Point_obj, "obj", .doc="Associated object.")
HPy Point_obj_get(HPyContext *ctx, HPy self, void* closure)
{
 PointObject *p = PointObject_AsStruct(ctx, self);
 return HPyField_Load(ctx, self, p->obj);
}

// an HPy method of Point
HPyDef_METH(Point_norm, "norm", HPyFunc_NOARGS, .doc="Distance from origin.")
HPy Point_norm_impl(HPyContext *ctx, HPy self)
{
 PointObject *p = PointObject_AsStruct(ctx, self);
 double norm;
 norm = sqrt(p->x * p->x + p->y * p->y);
 return HPyFloat_FromDouble(ctx, norm);
}

// this is an LEGACY function which casts a PyObject* into a PyPointObject*
PyObject* dot(PyObject *self, PyObject *args)
{
 PyObject *point1, *point2;
 if (!PyArg_ParseTuple(args, "OO", &point1, &point2))
 return NULL;

 PyPointObject *p1 = (PyPointObject *)point1;
 PyPointObject *p2 = (PyPointObject *)point2;

 double dp;
 dp = p1->x * p2->x + p1->y * p2->y;
 return PyFloat_FromDouble(dp);
}

// Method, type and module definitions. In this porting step .norm()
// is ported to HPy, but dot(...) remains a legacy methods.
// Point.__init__ and Point.__doc__ are ported from legacy slots to
// HPy type defines.

// Legacy methods (there are no legacy methods left now)
static PyMethodDef PointMethods[] = {
 {NULL, NULL, 0, NULL}
};

// Legacy slots (all slots are still legacy slots)
static PyType_Slot Point_legacy_slots[] = {
 {Py_tp_doc, "Point (Step 2; Porting some methods)"},
 {Py_tp_methods, PointMethods},
 {0, 0}
};

// HPy type methods and slots
static HPyDef *point_defines[] = {
 &Point_init,
 &Point_norm,
 &Point_obj,
 &Point_traverse,
 NULL
};

static HPyType_Spec Point_Type_spec = {
 .name = "point_hpy_legacy_2.Point",
 .basicsize = sizeof(PointObject),
 .itemsize = 0,
 .flags = HPy_TPFLAGS_DEFAULT,
 .builtin_shape = SHAPE(PointObject),
 .legacy_slots = Point_legacy_slots,
 .defines = point_defines
};

// Legacy module methods (the "dot" method is still a PyCFunction)
static PyMethodDef PointModuleLegacyMethods[] = {
 {"dot", (PyCFunction)dot, METH_VARARGS, "Dot product."},
 {NULL, NULL, 0, NULL}
};

// HPy module methods (no methods have been ported yet)
static HPyDef *module_defines[] = {
 NULL
};

static HPyModuleDef moduledef = {
 .name = "step_02_hpy_legacy",
 .doc = "Point module (Step 2; Porting some methods)",
 .size = -1,
 .legacy_methods = PointModuleLegacyMethods,
 .defines = module_defines,
};

HPy_MODINIT(step_02_hpy_legacy)
static HPy init_step_02_hpy_legacy_impl(HPyContext *ctx)
{
 HPy m = HPyModule_Create(ctx, &moduledef);
 if (HPy_IsNull(m))
 return HPy_NULL;

 HPy point_type = HPyType_FromSpec(ctx, &Point_Type_spec, NULL);
 if (HPy_IsNull(point_type))
 return HPy_NULL;
 HPy_SetAttr_s(ctx, m, "Point", point_type);

 return m;
}

 step_03_hpy_final.c

step_03_hpy_final.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

	#include <math.h>
// #include <Python.h> // disallow use of the old C API
#include <hpy.h>

// Porting to HPy, Step 3: All methods ported
//
// An example of porting a C extension that implements a Point type
// with a couple of simple methods (a norm and a dot product). It
// illustrates the steps needed to port types that contain additional
// C attributes (in this case, x and y).
//
// This file contains an example final step of the port in which all methods
// have been converted to HPy methods and PyObject_HEAD has been removed.

typedef struct {
 // PyObject_HEAD is no longer available in PointObject. In CPython,
 // of course, it still exists but is inaccessible from HPy_AsStruct. In
 // other Python implementations (e.g. PyPy) it might no longer exist at
 // all.
 double x;
 double y;
 HPyField obj;
} PointObject;

// Code using PyPointObject relied on PyObject_HEAD and is no longer valid
// (PyObject_HEAD has been removed from the PointObject struct above). The
// typedef below has been deleted to ensure that such code is now generates
// an error during compilation.
// typedef PointObject PyPointObject;

// The type helper macro defines an PointObject_AsStruct function allows
// converting HPy handles to PointObject structs. We no longer need to use
// the legacy type helper macro because PyObject_HEAD has been removed from
// PointObject.
HPyType_HELPERS(PointObject)

HPyDef_SLOT(Point_traverse, HPy_tp_traverse)
int Point_traverse_impl(void *self, HPyFunc_visitproc visit, void *arg)
{
 HPy_VISIT(&((PointObject*)self)->obj);
 return 0;
}

// this is a method for creating a Point
HPyDef_SLOT(Point_init, HPy_tp_init)
int Point_init_impl(HPyContext *ctx, HPy self, HPy *args, HPy_ssize_t nargs, HPy kw)
{
 static const char *kwlist[] = {"x", "y", "obj", NULL};
 PointObject *p = PointObject_AsStruct(ctx, self);
 p->x = 0.0;
 p->y = 0.0;
 HPy obj = HPy_NULL;
 HPyTracker ht;
 if (!HPyArg_ParseKeywords(ctx, &ht, args, nargs, kw, "|ddO", kwlist,
 &p->x, &p->y, &obj))
 return -1;
 if (HPy_IsNull(obj))
 obj = ctx->h_None;
 // INCREF not needed because HPyArg_ParseKeywords does not steal a reference
 HPyField_Store(ctx, self, &p->obj, obj);
 HPyTracker_Close(ctx, ht);
 return 0;
}

// this is the getter for the associated object
HPyDef_GET(Point_obj, "obj", .doc="Associated object.")
HPy Point_obj_get(HPyContext *ctx, HPy self, void* closure)
{
 PointObject *p = PointObject_AsStruct(ctx, self);
 return HPyField_Load(ctx, self, p->obj);
}

// an HPy method of Point
HPyDef_METH(Point_norm, "norm", HPyFunc_NOARGS, .doc="Distance from origin.")
HPy Point_norm_impl(HPyContext *ctx, HPy self)
{
 PointObject *p = PointObject_AsStruct(ctx, self);
 double norm;
 norm = sqrt(p->x * p->x + p->y * p->y);
 return HPyFloat_FromDouble(ctx, norm);
}

// this is an HPy function that uses Point
HPyDef_METH(dot, "dot", HPyFunc_VARARGS, .doc="Dot product.")
HPy dot_impl(HPyContext *ctx, HPy self, HPy *args, HPy_ssize_t nargs)
{
 HPy point1, point2;
 if (!HPyArg_Parse(ctx, NULL, args, nargs, "OO", &point1, &point2))
 return HPy_NULL;
 PointObject *p1 = PointObject_AsStruct(ctx, point1);
 PointObject *p2 = PointObject_AsStruct(ctx, point2);
 double dp;
 dp = p1->x * p2->x + p1->y * p2->y;
 return HPyFloat_FromDouble(ctx, dp);
}

// Method, type and module definitions. In this porting step all
// methods and slots have been ported to HPy and all legacy support
// has been removed.

// Support for legacy methods and slots has been removed. It used to be:
///
// static PyMethodDef PointMethods[] = { ... }
// static PyType_Slot Point_legacy_slots[] = { ... }
// static PyMethodDef PointModuleLegacyMethods[] = { ... }
//
// and .legacy_slots and .legacy_defines have been removed from HPyType_Spec
// HPyModuleDef respectively.

// HPy type methods and slots
static HPyDef *point_defines[] = {
 &Point_init,
 &Point_norm,
 &Point_obj,
 &Point_traverse,
 NULL
};

static HPyType_Spec Point_Type_spec = {
 .name = "point_hpy_final.Point",
 .doc = "Point (Step 03)",
 .basicsize = sizeof(PointObject),
 .itemsize = 0,
 .flags = HPy_TPFLAGS_DEFAULT,
 .defines = point_defines
};

// HPy module methods
static HPyDef *module_defines[] = {
 &dot,
 NULL
};

static HPyModuleDef moduledef = {
 .name = "step_03_hpy_final",
 .doc = "Point module (Step 3; Porting complete)",
 .size = -1,
 .defines = module_defines,
};

HPy_MODINIT(step_03_hpy_final)
static HPy init_step_03_hpy_final_impl(HPyContext *ctx)
{
 HPy m = HPyModule_Create(ctx, &moduledef);
 if (HPy_IsNull(m))
 return HPy_NULL;

 HPy point_type = HPyType_FromSpec(ctx, &Point_Type_spec, NULL);
 if (HPy_IsNull(point_type))
 return HPy_NULL;
 HPy_SetAttr_s(ctx, m, "Point", point_type);

 return m;
}

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 HPy: a better API for Python

 		
 HPy overview

 		
 Motivation and goals

 		
 API vs ABI

 		
 Target ABIs

 		
 Benefits for the Python ecosystem

 		
 Cython extensions

 		
 Extensions in other languages

 		
 Benefits for alternative Python implementations

 		
 Current status and roadmap

 		
 Early benchmarks

 		
 Projects involved

 		
 Related work

 		
 HPy API introduction

 		
 Handles

 		
 Handles vs PyObject *

 		
 HPyContext

 		
 A simple example

 		
 Building the module

 		
 VARARGS calling convention

 		
 Porting guide

 		
 Porting PyObject * to HPy API constructs

 		
 tp_traverse, tp_clear, Py_TPFLAGS_HAVE_GC

 		
 tp_dealloc and Py_DECREF

 		
 PyModule_AddObject

 		
 Py_tp_dealloc

 		
 Py_tp_methods, Py_tp_members and Py_tp_getset

 		
 PyList_New/PyList_SET_ITEM

 		
 PyObject_Call and PyObject_CallObject

 		
 Buffers

 		
 Porting Example

 		
 Step 01: Converting the module to a (legacy) HPy module

 		
 Step 02: Transition some methods to HPy

 		
 Step 03: Complete the port to HPy

 		
 Debug Mode

 		
 Activating Debug Mode

 		
 Using Debug Mode

 		
 Example

 		
 API Reference

 		
 HPyField

 		
 HPyGlobal

 		
 Leave/enter Python execution (GIL)

 		
 Argument Parsing

 		
 Supported Formatting Strings

 		
 Argument Parsing API

 		
 Building complex Python objects

 		
 Supported Formatting Strings

 		
 API

 		
 Runtime Helpers

 		
 Runtime Helpers API

 		
 Misc notes

 		
 bytes/str building API

 		
 Current CPython API

 		
 Raw-buffer vs Opaque API

 		
 Problems and constraints

 		
 Real world usage

 		
 Changelog

 		
 Version 0.0.4 (May 25th, 2022)

 		
 Version 0.0.3 (September 22nd, 2021)

