
HPy
Release 0.9

HPy Collective

Sep 22, 2023

CONTENTS

1 Where to go next: 3

2 Full table of contents: 5
2.1 HPy Quickstart . 5
2.2 HPy Overview . 7
2.3 HPy API Introduction . 12
2.4 Porting Guide . 22
2.5 Porting Example . 33
2.6 Debug Mode . 41
2.7 Trace Mode . 44
2.8 API Reference . 45
2.9 Contributing . 109
2.10 Misc Notes . 109
2.11 Changelog . 110

3 Indices and tables 115

Index 117

i

ii

HPy, Release 0.9

HPy provides a new API for extending Python in C.

There are several advantages to writing C extensions in HPy:

• Speed: it runs much faster on PyPy, GraalPy, and at native speed on CPython

• Deployment: it is possible to compile a single binary which runs unmodified on all supported Python imple-
mentations and versions – think “stable ABI” on steroids

• Simplicity: it is simpler and more manageable than the Python.h API, both for the users and the Pythons
implementing it

• Debugging: it provides an improved debugging experience. Debug mode can be turned on at runtime without
the need to recompile the extension or the Python running it. HPy design is more suitable for automated checks.

The official Python/C API, also informally known as #include <Python.h>, is specific to the current implemen-
tation of CPython: it exposes a lot of internal details which makes it hard to:

• implement it for other Python implementations (e.g. PyPy, GraalPy, Jython, . . .)

• experiment with new approaches inside CPython itself, for example:

– use a tracing garbage collection instead of reference counting

– remove the global interpreter lock (GIL) to take full advantage of multicore architectures

– use tagged pointers to reduce memory footprint

CONTENTS 1

https://docs.python.org/3/c-api/index.html

HPy, Release 0.9

2 CONTENTS

CHAPTER

ONE

WHERE TO GO NEXT:

• Show me the code:

– Quickstart

– Simple documented HPy extension example

– Tutorial: porting Python/C API extension to HPy

• Details:

– HPy overview: motivation, goals, current status

– HPy API concepts introduction

– Python/C API to HPy Porting guide

– HPy API reference

3

HPy, Release 0.9

4 Chapter 1. Where to go next:

CHAPTER

TWO

FULL TABLE OF CONTENTS:

2.1 HPy Quickstart

This section shows how to quickly get started with HPy by creating a simple HPy extension from scratch.

Install latest HPy release:

python3 -m pip install hpy

Alternatively, you can also install HPy from the development repository:

python3 -m pip install git+https://github.com/hpyproject/hpy.git#egg=hpy

Create a new directory for the new HPy extension. Location and name of the directory do not matter. Add the following
two files:

// quickstart.c

// This header file is the entrypoint to the HPy API:
#include "hpy.h"

// HPy method: the HPyDef_METH macro generates some boilerplate code,
// the same code can be also written manually if desired
HPyDef_METH(say_hello, "say_hello", HPyFunc_NOARGS)
static HPy say_hello_impl(HPyContext *ctx, HPy self)
{

// Methods take HPyContext, which must be passed as the first argument to
// all HPy API functions. Other than that HPyUnicode_FromString does the
// same thing as PyUnicode_FromString.
//
// HPy type represents a "handle" to a Python object, but may not be
// a pointer to the object itself. It should be fully "opaque" to the
// users. Try uncommenting the following two lines to see the difference
// from PyObject*:
//
// if (self == self)
// HPyUnicode_FromString(ctx, "Surprise? Try HPy_Is(ctx, self, self)");

return HPyUnicode_FromString(ctx, "Hello world");
}

static HPyDef *QuickstartMethods[] = {
&say_hello, // 'say_hello' generated for us by the HPyDef_METH macro
NULL,

(continues on next page)

5

HPy, Release 0.9

(continued from previous page)

};

static HPyModuleDef quickstart_def = {
.doc = "HPy Quickstart Example",
.defines = QuickstartMethods,

};

// The Python interpreter will create the module for us from the
// HPyModuleDef specification. Additional initialization can be
// done in the HPy_mod_exec slot
HPy_MODINIT(quickstart, quickstart_def)

setup.py

from setuptools import setup, Extension
from os import path

DIR = path.dirname(__file__)
setup(

name="hpy-quickstart",
hpy_ext_modules=[

Extension('quickstart', sources=[path.join(DIR, 'quickstart.c')]),
],
setup_requires=['hpy'],

)

Build the extension:

python3 setup.py --hpy-abi=universal develop

Try it out – start Python console in the same directory and type:

import quickstart
assert quickstart.say_hello() == "Hello world"

Notice the shared library that was created by running setup.py:

> ls *.so
quickstart.hpy0.so

It does not have Python version encoded in it. If you happen to have GraalPy or PyPy installation that supports given
HPy version, you can try running the same extension on it. For example, start $GRAALVM_HOME/bin/graalpy
in the same directory and type the same Python code: the extension should load and work just fine.

Where to go next?

• Simple documented HPy extension example

• Tutorial: porting Python/C API extension to HPy

6 Chapter 2. Full table of contents:

HPy, Release 0.9

2.2 HPy Overview

2.2.1 Motivation and goals

The superpower of the Python ecosystem is its libraries, which are developed by users. Over time, these libraries have
grown in number, quality, and applicability. While it is possible to write python libraries entirely in python, many
of them, especially in the scientific community, are written in C and exposed to Python using the Python.h API. The
existence of these C extensions using the Python.h API leads to some issues:

1. Usually, alternative implementation of the Python programming language want to support C extensions. To do
so, they must implement the same Python.h API or provide a compatibility layer.

2. CPython developers cannot experiment with new designs or refactoring without breaking compatibility with
existing extensions.

Over the years, it has become evident that emulating Python.h in an efficient way is challenging, if not impossible.
To summarize, it is mainly due to leaking of implementation details of CPython into the C/API - which makes it
difficult to make different design choices than those made by CPython. As such - the main goal of HPy is to provide a
C API which makes as few assumptions as possible about the design decisions of any implementation of Python,
allowing diverse implementations to support it efficiently and without compromise. In particular, reference
counting is not part of the API: we want a more generic way of managing resources that is possible to implement
with different strategies, including the existing reference counting and/or with a moving Garbage Collector (like the
ones used by PyPy, GraalPy or Java, for example). Moreover, each implementation can experiment with new memory
layout of objects, add optimizations, etc. The following is a list of sub-goals.

Performance on CPython HPy is usable on CPython from day 1 with no performance impact compared to the exist-
ing Python.h API.

Incremental adoption It is possible to port existing C extensions piece by piece and to use the old and the new API
side-by-side during the transition.

Easy migration It should be easy to migrate existing C extensions to HPy. Thanks to an appropriate and regular
naming convention it should be obvious what the HPy equivalent of any existing Python.h API is. When a
perfect replacement does not exist, the documentation explains what the alternative options are.

Better debugging In debug mode, you get early and precise errors and warnings when you make some specific kind
of mistakes and/or violate the API rules and assumptions. For example, you get an error if you try to use a
handle (see Handles) which has already been closed. It is possible to turn on the debug mode at startup time,
without needing to recompile.

Simplicity The HPy API aims to be smaller and easier to study/use/manage than the existing Python.h API. Some-
times there is a trade-off between this goal and the others above, in particular Performance on CPython and
Easy migration. The general approach is to have an API which is “as simple as possible” while not violating the
other goals.

Universal binaries It is possible to compile extensions to a single binary which is ABI-compatible across multiple
Python versions and/or multiple implementation. See Target ABIs.

Opt-in low level data structures Internal details might still be available, but in a opt-in way: for example, if Cython
wants to iterate over a list of integers, it can ask if the implementation provides a direct low-level access to the
content (e.g. in the form of a int64_t[] array) and use that. But at the same time, be ready to handle the
generic fallback case.

2.2. HPy Overview 7

https://docs.python.org/3/c-api/index.html
https://www.pypy.org/posts/2018/09/inside-cpyext-why-emulating-cpython-c-8083064623681286567.html

HPy, Release 0.9

2.2.2 API vs ABI

HPy defines both an API and an ABI. Before digging further into details, let’s distinguish them:

• The API works at the level of source code: it is the set of functions, macros, types and structs which developers
can use to write their own extension modules. For C programs, the API is generally made available through one
or more header files (*.h).

• The ABI works at the level of compiled code: it is the interface between the host interpreter and the compiled
DLL. Given a target CPU and operating system it defines things like the set of exported symbols, the precise
memory layout of objects, the size of types, etc.

In general it is possible to compile the same source into multiple compiled libraries, each one targeting a different
ABI. PEP 3149 states that the filename of the compiled extension should contain the ABI tag to specify what the
target ABI is. For example, if you compile an extension called simple.c on CPython 3.8, you get a DLL called
simple.cpython-38-x86_64-linux-gnu.so:

• cpython-38 is the ABI tag, in this case CPython 3.8

• x86_64 is the CPU architecture

• linux-gnu is the operating system

The same source code compiled on PyPy3.6 7.2.0 results in a file called simple.
pypy38-pp73-x86_64-linux-gnu.so:

• pypy38-pp73 is the ABI tag, in this case “PyPy3.8”, version “7.3.x”

The HPy C API is exposed to the user by including hpy.h and it is explained in its own section of the documentation.

2.2.3 Legacy and compatibility features

To allow an incremental transition to HPy, it is possible to use both hpy.h and Python.h API calls in the same
extension. Using HPy legacy features you can:

• mix Python.h and HPy method defs in the same HPy module

• mix Python.h and HPy method defs and slots in the same HPy type

• convert HPy handles to and from PyObject * using HPy_AsPyObject() and HPy_FromPyObject()

Thanks to this, you can port your code to HPy one method and one type at a time, while keeping the extension fully
functional during the transition period. See the Porting Guide for a concrete example.

Legacy features are available only if you target the CPython or HPy Hybrid ABIs, as explained in the next section.

2.2.4 Target ABIs

Depending on the compilation options, an HPy extension can target three different ABIs:

CPython ABI In this mode, HPy is implemented as a set of C macros and static inline functions which trans-
late the HPy API into the CPython API at compile time. The result is a compiled extension which is indistin-
guishable from a “normal” one and can be distributed using all the standard tools and will run at the very same
speed.

Legacy features are available.

The output filename is e.g. simple.cpython-38-x86_64-linux-gnu.so.

8 Chapter 2. Full table of contents:

https://www.python.org/dev/peps/pep-3149

HPy, Release 0.9

HPy Universal ABI As the name suggests, the HPy Universal ABI is designed to be loaded and executed by a variety
of different Python implementations. Compiled extensions can be loaded unmodified on all the interpreters
which support it. PyPy and GraalPy support it natively. CPython supports it by using the hpy.universal
package, and there is a small speed penalty1 compared to the CPython ABI.

Legacy features are not available and it is forbidden to #include <Python.h>.

The resulting filename is e.g. simple.hpy0.so.

HPy Hybrid ABI The HPy Hybrid ABI is essentially the same as the Universal ABI, with the big difference that it
allows to #include <Python.h>, to use the legacy features and thus to allow incremental porting.

At the ABI level the resulting binary depends on both HPy and the specific Python implementation which was
used to compile the extension. As the name suggests, this means that the binary is not “universal”, thus negating
some of the benefits of HPy. The main benefit of using the HPy Hybrid ABI instead of the CPython ABI is
being able to use the Debug Mode on the HPy parts, and faster speed on alternative implementations.

Legacy features are available.

The resulting filename is e.g. simple.hpy0-cp38.so.

Moreover, each alternative Python implementation could decide to implement its own non-universal ABI if it makes
sense for them. For example, a hypothetical project DummyPython could decide to ship its own hpy.h which imple-
ments the HPy API but generates a DLL which targets the DummyPython ABI.

This means that to compile an extension for CPython, you can choose whether to target the CPython ABI or the
Universal ABI. The advantage of the former is that it runs at native speed, while the advantage of the latter is that
you can distribute a single binary, although with a small speed penalty on CPython. Obviously, nothing stops you
compiling and distributing both versions: this is very similar to what most projects are already doing, since they
automatically compile and distribute extensions for many different CPython versions.

From the user point of view, extensions compiled for the CPython ABI can be distributed and installed as usual,
while those compiled for the HPy Universal or HPy Hybrid ABIs require installing the hpy.universal package
on CPython and have no further requirements on Pythons that support HPy natively.

2.2.5 Benefits for the Python ecosystem

The HPy project offers some benefits to the python ecosystem, both to Python users and to library developers.

• C extensions can achieve much better speed on alternative implementions, including PyPy and GraalPy: ac-
cording to early Early benchmarks, an extension written in HPy can be ~3x faster than the equivalent extension
written using Python.h.

• Improved debugging: when you load extensions in Debug Mode, many common mistakes are checked and
reported automatically.

• Universal binaries: libraries can choose to distribute only Universal ABI binaries. By doing so, they can support
all Python implementations and version of CPython (like PyPy, GraalPy, CPython 3.10, CPython 3.11, etc) for
which an HPy loader exists, including those that do not yet exist! This currently comes with a small speed
penalty on CPython, but for non-performance critical libraries it might still be a good tradeoff.

• Python environments: With general availability of universal ABI binaries for popular packages, users can create
equivalent python environments that target different Python implementations. Thus, Python users can try their
workload against different implementations and pick the one best suited for their usage.

• In a situation where most or all popular Python extensions target the universal ABI, it will be more feasible for
CPython to make breaking changes to its C/API for performance or maintainability reasons.

1 The reason for this minor performance penalty is a layer of pointer indirection. For instance, ctx->HPyLong_FromLong is called from the
CPython extension, which in universal mode simply forwards the call to PyLong_FromLong. It is technically possible to implement a CPython
universal module loader which edits the program’s executable code at runtime to replace that call. Note that this is not at all trivial.

2.2. HPy Overview 9

HPy, Release 0.9

2.2.6 Cython extensions

If you use Cython, you can’t use HPy directly. There is a work in progress to add Cython backend which emits HPy
code instead of using Python.h code: once this is done, you will get the benefits of HPy automatically.

2.2.7 Extensions in other languages

On the API side, HPy is designed with C in mind, so it is not directly useful if you want to write an extension in a
language other than C.

However, Python bindings for other languages could decide to target the HPy Universal ABI instead of the CPython
ABI, and generate extensions which can be loaded seamlessly on all Python implementations which supports it. This
is the route taken, for example, by Rust.

2.2.8 Benefits for alternative Python implementations

If you are writing an alternative Python implementation, there is a good chance that you already know how painful it
is to support the Python.h API. HPy is designed to be both faster and easier to implement!

You have two choices:

• support the Universal ABI: in this case, you just need to export the needed functions and to add a hook to
dlopen() the desired libraries

• use a custom ABI: in this case, you have to write your own replacement for hpy.h and recompile the C
extensions with it.

2.2.9 Current status and roadmap

HPy left the early stages of development and already provides a noticeable set of features. As on April 2023, the
following milestones have been reached:

• some prominent real-world Python packages have been ported to HPy API. There is a list of HPy-compatible
packages we know about on the HPy website hpyproject.org.

• one can write extensions which expose module-level functions, with all the various kinds of calling conventions.

• there is support for argument parsing (i.e., the equivalents of PyArg_ParseTuple and
PyArg_ParseTupleAndKeywords), and a convenient complex value building (i.e., the equivalent
Py_BuildValue).

• one can implement custom types, whose struct may contain references to other Python objects using
HPyField.

• there is a support for globally accessible Python object handles: HPyGlobal, which can still provide isolation
for subinterpreters if needed.

• there is support for raising and catching exceptions.

• debug mode has been implemented and can be activated at run-time without recompiling. It can detect leaked
handles or handles used after being closed.

• trace mode has been implemented and can be activated just like the debug mode. It helps analyzing the API
usage (in particular wrt. performance).

• wheels can be built for HPy extensions with python setup.py bdist_wheel and can be installed with
pip install.

10 Chapter 2. Full table of contents:

https://github.com/cython/cython/pull/4490
https://github.com/pyhandle/rust-hpy
https://hpyproject.org/

HPy, Release 0.9

• it is possible to choose between the CPython ABI and the HPy Universal ABI when compiling an extension
module.

• extensions compiled with the CPython ABI work out of the box on CPython.

• it is possible to load HPy Universal extensions on CPython, thanks to the hpy.universal package.

• it is possible to load HPy Universal extensions on PyPy (using the PyPy hpy branch).

• it is possible to load HPy Universal extensions on GraalPy.

• there is support for multi-phase module initialization.

• support for metaclasses has been added.

However, there is still a long road before HPy is usable for the general public. In particular, the following features are
on our roadmap but have not been implemented yet:

• many of the original Python.h functions have not been ported to HPy yet. Porting most of them is straight-
forward, so for now the priority is to test HPy with real-world Python packages and primarily resolve the “hard”
features to prove that the HPy approach works.

• add C-level module state to complement the HPyGlobal approach. While HPyGlobal is easier to use, it will
make the migration simpler for existing extensions that use CPython module state.

• the integration with Cython is work in progress

• it is not clear yet how to approach pybind11 and similar C++ bindings. They serve two use-cases:

– As C++ wrappers for CPython API. HPy is fundamentally different in some ways, so fully compatible
pybind11 port of this API to HPy does not make sense. There can be a similar or even partially pybind11
compatible C++ wrapper for HPy adhering to the HPy semantics and conventions (e.g., passing the HPy-
Context pointer argument around, no reference stealing, etc.).

– Way to expose (or “bind”) mostly pure C++ functions as Python functions where the C++ templating
machinery takes care of the conversion between the Python world, i.e., PyObject*, and the C++ types.
Porting this abstraction to HPy is possible and desired in the future. To determine the priority or such
effort, we need to get more knowledge about existing pybind11 use-cases.

2.2.10 Early benchmarks

To validate our approach, we ported a simple yet performance critical module to HPy. We chose ultrajson because it
is simple enough to require porting only a handful of API functions, but at the same time it is performance critical and
performs many API calls during the parsing of a JSON file.

This blog post explains the results in more detail, but they can be summarized as follows:

• ujson-hpy compiled with the CPython ABI is as fast as the original ujson.

• A bit surprisingly, ujson-hpy compiled with the HPy Universal ABI is only 10% slower on CPython. We
need more evidence than a single benchmark of course, but if the overhead of the HPy Universal ABI is only
10% on CPython, many projects may find it small enough that the benefits of distributing extensions using only
the HPy Universal ABI out weight the performance costs.

• On PyPy, ujson-hpy runs 3x faster than the original ujson. Note the HPy implementation on PyPy is not
fully optimized yet, so we expect even bigger speedups eventually.

2.2. HPy Overview 11

https://foss.heptapod.net/pypy/pypy/tree/branch/hpy
https://github.com/graalvm/graalpython
https://github.com/pyhandle/ultrajson-hpy
https://www.pypy.org/posts/2019/12/hpy-kick-off-sprint-report-1840829336092490938.html

HPy, Release 0.9

2.2.11 Projects involved

HPy was born during EuroPython 2019, were a small group of people started to discuss the problems of the Python.
h API and how it would be nice to have a way to fix them. Since then, it has gathered the attention and interest of
people who are involved in many projects within the Python ecosystem. The following is a (probably incomplete)
list of projects whose core developers are involved in HPy, in one way or the other. The mere presence in this list
does not mean that the project as a whole endorse or recognize HPy in any way, just that some of the people involved
contributed to the code/design/discussions of HPy:

• PyPy

• CPython

• Cython

• GraalPy

• RustPython

• rust-hpy (fork of the cpython crate)

2.2.12 Related work

A partial list of alternative implementations which offer a Python.h compatibility layer include:

• PyPy

• Jython

• IronPython

• GraalPy

2.3 HPy API Introduction

2.3.1 Handles

The “H” in HPy stands for handle, which is a central concept: handles are used to hold a C reference to Python
objects, and they are represented by the C HPy type. They play the same role as PyObject * in the Python.h
API, albeit with some important differences which are detailed below.

When they are no longer needed, handles must be closed by calling HPy_Close, which plays more or less the
same role as Py_DECREF. Similarly, if you need a new handle for an existing object, you can duplicate it by calling
HPy_Dup, which plays more or less the same role as Py_INCREF.

The HPy API strictly follows these rules:

• HPy handles returned by a function are never borrowed, i.e., the caller must either close or return it.

• HPy handles passed as function arguments are never stolen; if you receive a HPy handle argument from your
caller, you should never close it.

These rules makes the code simpler to reason about. Moreover, no reference borrowing enables the Python implemen-
tations to use whatever internal representation they wish. For example, the object returned by HPy_GetItem_i may
be created on demand from some compact internal representation, which does not need to convert itself to full blown
representation in order to hold onto the borrowed object.

12 Chapter 2. Full table of contents:

https://crates.io/crates/cpython
https://doc.pypy.org/en/latest/faq.html#do-cpython-extension-modules-work-with-pypy
https://www.jyni.org/
https://github.com/IronLanguages/ironclad
https://github.com/graalvm/graalpython

HPy, Release 0.9

We strongly encourage the users of HPy to also internally follow these rules for their own internal APIs and helper
functions. For the sake of simplicity and easier local reasoning and also because in the future, code adhering to those
rules may be suitable target for some scalable and precise static analysis tool.

The concept of handles is certainly not unique to HPy. Other examples include Unix file descriptors, where you have
dup() and close(), and Windows’ HANDLE, where you have DuplicateHandle() and CloseHandle().

Handles vs PyObject *

In order to fully understand the way HPy handles work, it is useful to discuss the Pyobject * pointer in Python.
h. These pointers always point to the same object, and a python object’s identity is completely given by its address
in memory, and two pointers with the same address can be passed to Python.h API functions interchangeably. As
a result, Py_INCREF and Py_DECREF can be called with any reference to an object as long as the total number of
calls of incref is equal to the number of calls of decref at the end of the object lifetime.

Whereas using HPy API, each handle must be closed independently.

Thus, the following perfectly valid piece of code using Python.h:

void foo(void)
{

PyObject *x = PyLong_FromLong(42); // implicit INCREF on x
PyObject *y = x;
Py_INCREF(y); // INCREF on y
/* ... */
Py_DECREF(x);
Py_DECREF(x); // two DECREF on x

}

Becomes using HPy API:

void foo(HPyContext *ctx)
{

HPy x = HPyLong_FromLong(ctx, 42);
HPy y = HPy_Dup(ctx, x);
/* ... */
// we need to close x and y independently
HPy_Close(ctx, x);
HPy_Close(ctx, y);

}

Calling any HPy function on a closed handle is an error. Calling HPy_Close() on the same handle twice is an error.
Forgetting to call HPy_Close() on a handle results in a memory leak. When running in Debug Mode, HPy actively
checks that you don’t close a handle twice and that you don’t forget to close any.

Note: Debug mode is a good example of how powerful it is to decouple the identity and therefore the lifetime of
handles and those of objects. If you find a memory leak on CPython, you know that you are missing a Py_DECREF
somewhere but the only way to find the corresponding Py_INCREF is to manually and carefully study the source
code. On the other hand, if you forget to call HPy_Close(), debug mode is able to identify the precise code location
which created the unclosed handle. Similarly, if you try to operate on a closed handle, it will identify the precise code
locations which created and closed it. This is possible because handles are associated with a single call to a C/API
function. As a result, given a handle that is leaked or used after freeing, it is possible to identify exactly the C/API
function that produced it.

Remember that Python.h guarantees that multiple references to the same object results in the very same PyObject
* pointer. Thus, it is possible to compare the pointer addresses to check whether they refer to the same object:

2.3. HPy API Introduction 13

HPy, Release 0.9

int is_same_object(PyObject *x, PyObject *y)
{

return x == y;
}

On the other hand, in HPy, each handle is independent and it is common to have two different handles which point
to the same underlying object, so comparing two handles directly is ill-defined. To prevent this kind of common
error (especially when porting existing code to HPy), the HPy C type is opaque and the C compiler actively forbids
comparisons between them. To check for identity, you can use HPy_Is():

int is_same_object(HPyContext *ctx, HPy x, HPy y)
{

// return x == y; // compilation error!
return HPy_Is(ctx, x, y);

}

Note: The main benefit of opaque handle semantics is that implementations are allowed to use very different models
of memory management. On CPython, implementing handles is trivial because HPy is basically PyObject * in
disguise, and HPy_Dup() and HPy_Close() are just aliases for Py_INCREF and Py_DECREF.

Unlike CPython, PyPy does not use reference counting to manage memory: instead, it uses a moving GC, which
means that the address of an object might change during its lifetime, and this makes it hard to implement semantics
like PyObject *’s where the address identifies the object, and this is directly exposed to the user. HPy solves this
problem: on PyPy, handles are integers which represent indices into a list, which is itself managed by the GC. When
an address changes, the GC edits the list, without having to touch all the handles which have been passed to C.

2.3.2 HPyContext

All HPy function calls take an HPyContext as a first argument, which represents the Python interpreter all the
handles belong to. Strictly speaking, it would be possible to design the HPy API without using HPyContext: after
all, all HPy function calls are ultimately mapped to Python.h function call, where there is no notion of context.

One of the reasons to include HPyContext from the day one is to be future-proof: it is conceivable to use it to hold
the interpreter or the thread state in the future, in particular when there will be support for sub-interpreters. Another
possible usage could be to embed different versions or implementations of Python inside the same process. In addition,
the HPyContext may also be extended by adding new functions to the end without breaking any extensions built
against the current HPyContext.

Moreover, HPyContext is used by the HPy Universal ABI to contain a sort of virtual function table which is used
by the C extensions to call back into the Python interpreter.

2.3.3 A simple example

In this section, we will see how to write a simple C extension using HPy. It is assumed that you are already familiar
with the existing Python.h API, so we will underline the similarities and the differences with it.

We want to create a function named myabs and double which takes a single argument and computes its absolute
value:

#include "hpy.h"

HPyDef_METH(myabs, "myabs", HPyFunc_O)

(continues on next page)

14 Chapter 2. Full table of contents:

HPy, Release 0.9

(continued from previous page)

static HPy myabs_impl(HPyContext *ctx, HPy self, HPy arg)
{

return HPy_Absolute(ctx, arg);
}

There are a couple of points which are worth noting:

• We use the macro HPyDef_METH to declare we are going to define a HPy function called myabs.

• The function will be available under the name "myabs" in our Python module.

• The actual C function which implements myabs is called myabs_impl and is inferred by the macro. The
macro takes the name and adds _impl to the end of it.

• It uses the HPyFunc_O calling convention. Like METH_O in Python.h, HPyFunc_Omeans that the function
receives a single argument on top of self.

• myabs_impl takes two arguments of type HPy: handles for self and the argument, which are guaranteed to
be valid. They are automatically closed by the caller, so there is no need to call HPy_Close on them.

• myabs_impl returns a handle, which has to be closed by the caller.

• HPy_Absolute is the equivalent of PyNumber_Absolute and computes the absolute value of the given
argument.

• We also do not call HPy_Close on the result returned to the caller. We must return a valid handle.

Note: Among other things, the HPyDef_METH macro is needed to maintain compatibility with CPython. In
CPython, C functions and methods have a C signature that is different to the one used by HPy: they don’t receive
an HPyContext and their arguments have the type PyObject * instead of HPy. The macro automatically gen-
erates a trampoline function whose signature is appropriate for CPython and which calls the myabs_impl. This
trampoline is then used from both the CPython ABI and the CPython implementation of the universal ABI, but other
implementations of the universal ABI will usually call directly the HPy function itself.

The second function definition is a bit different:

HPyDef_METH_IMPL(double_num, "double", double_impl, HPyFunc_O)
static HPy double_impl(HPyContext *ctx, HPy self, HPy arg)
{

return HPy_Add(ctx, arg, arg);
}

This shows off the other way of creating functions.

• This example is much the same but the difference is that we use HPyDef_METH_IMPL to define a function
named double.

• The difference between HPyDef_METH_IMPL and HPyDef_METH is that the former needs to be given a
name for a the functions as the third argument.

Now, we can define our module:

static HPyDef *SimpleMethods[] = {
&myabs,
&double_num,
NULL,

};

(continues on next page)

2.3. HPy API Introduction 15

HPy, Release 0.9

(continued from previous page)

static HPyModuleDef simple = {
.doc = "HPy Example",
.size = 0,
.defines = SimpleMethods,
.legacy_methods = NULL

};

This part is very similar to the one you would write with Python.h. Note that we specify myabs (and not
myabs_impl) in the method table. There is also the .legacy_methods field, which allows to add methods
that use the Python.h API, i.e., the value should be an array of PyMethodDef. This feature enables support for
hybrid extensions in which some of the methods are still written using the Python.h API.

Note that the HPy module does not specify its name. HPy does not support the legacy single phase module initialization
and the only module initialization approach is the multi-phase initialization (PEP 489). With multi-phase module
initialization, the name of the module is always taken from the ModuleSpec (PEP 451) , i.e., most likely from the
name used in the import {{name}} statement that imported your module.

This is the only difference stemming from multi-phase module initialization in this simple example. As long as there
is no need for any further initialization, we can just “register” our module using the HPy_MODINIT convenience
macro. The first argument is the name of the extension file and is needed for HPy, among other things, to be able to
generate the entry point for CPython called PyInit_{{name}}. The second argument is the HPyModuleDef we
just defined.

HPy_MODINIT(simple, simple)

Building the module

Let’s write a setup.py to build our extension:

from setuptools import setup, Extension
from os import path

setup(
name="hpy-simple-example",
hpy_ext_modules=[

Extension('simple', sources=[path.join(path.dirname(__file__), 'simple.c')]),
],
setup_requires=['hpy'],

)

We can now build the extension by running python setup.py build_ext -i. On CPython, it
will target the CPython ABI by default, so you will end up with a file named e.g. simple.
cpython-37m-x86_64-linux-gnu.so which can be imported directly on CPython with no dependency on
HPy.

To target the HPy Universal ABI instead, it is possible to pass the option --hpy-abi=universal to setup.py.
The following command will produce a file called simple.hpy.so (note that you need to specify --hpy-abi
before build_ext, since it is a global option):

python setup.py --hpy-abi=universal build_ext -i

Note: This command will also produce a Python file named simple.py, which loads the HPy module using the
universal.load function from the hpy Python package.

16 Chapter 2. Full table of contents:

https://peps.python.org/pep-0489/
https://peps.python.org/pep-0451/

HPy, Release 0.9

VARARGS calling convention

If we want to receive more than a single arguments, we need the HPy_METH_VARARGS calling convention. Let’s add
a function add_ints which adds two integers:

HPyDef_METH(add_ints, "add_ints", HPyFunc_VARARGS)
static HPy add_ints_impl(HPyContext *ctx, HPy self, const HPy *args, size_t nargs)
{

long a, b;
if (!HPyArg_Parse(ctx, NULL, args, nargs, "ll", &a, &b))

return HPy_NULL;
return HPyLong_FromLong(ctx, a+b);

}

There are a few things to note:

• The C signature is different than the corresponding Python.h METH_VARARGS: in particular, instead of
taking a tuple PyObject *args, we take an array of HPy and its size. This allows the call to happen more
efficiently, because you don’t need to create a tuple just to pass the arguments.

• We call HPyArg_Parse to parse the arguments. Contrarily to almost all the other HPy functions, this is not a
thin wrapper around PyArg_ParseTuple because as stated above we don’t have a tuple to pass to it, although
the idea is to mimic its behavior as closely as possible. The parsing logic is implemented from scratch inside
HPy, and as such there might be missing functionality during the early stages of HPy development.

• If an error occurs, we return HPy_NULL: we cannot simply return NULL because HPy is not a pointer type.

Once we have written our function, we can add it to the SimpleMethods[] table, which now becomes:

static HPyDef *SimpleMethods[] = {
&myabs,
&add_ints,
NULL,

};

2.3.4 Creating types in HPy

Creating Python types in an HPy extension is again very similar to the C API with the difference that HPy only supports
creating types from a specification. This is necessary because there is no such C-level type as PyTypeObject since
that would expose the internal implementation.

Creating a simple type in HPy

This section assumes that the user wants to define a type that stores some data in a C-level structure. As an example,
we will create a simple C structure PointObject that represents a two-dimensional point.

typedef struct {
long x;
long y;

} PointObject;
HPyType_HELPERS(PointObject)

The macro call HPyType_HELPERS(PointObject) generates useful helper facilities for working with the type.
It generates a C enum PointObject_SHAPE and a helper function PointObject_AsStruct. The enum is
used in the type specification. The helper function is used to efficiently retrieving the pointer PointObject * from

2.3. HPy API Introduction 17

HPy, Release 0.9

an HPy handle to be able to access the C structure. We will use this helper function to implement the methods, get-set
descriptors, and slots.

It makes sense to expose fields PointObject.x and PointObject.y as Python-level members. To do
so, we need to define members by specifying their name, type, and location using HPy’s convenience macro
HPyDef_MEMBER:

HPyDef_MEMBER(Point_x, "x", HPyMember_LONG, offsetof(PointObject, x))
HPyDef_MEMBER(Point_y, "y", HPyMember_LONG, offsetof(PointObject, y))

The first argument of the macro is the name for the C glabal variable that will store the necessary information. We will
need that later for registration of the type. The second, third, and fourth arguments are the Python-level name, the C
type of the member, and the offset in the C structure, respectively.

Similarly, methods and get-set descriptors can be defined. For example, method foo is an instance method that takes
no arguments (the self argument is, of course, implicit), does some computation with fields x and y and returns a
Python int:

HPyDef_METH(Point_foo, "foo", HPyFunc_NOARGS)
static HPy Point_foo_impl(HPyContext *ctx, HPy self)
{

PointObject *point = PointObject_AsStruct(ctx, self);
return HPyLong_FromLong(ctx, point->x * 10 + point->y);

}

Get-set descriptors are also defined in a very similar way as methods. The following example defines a get-set descrip-
tor for attribute z which is calculated from the x and y fields of the struct.

HPyDef_GETSET(Point_z, "z", .closure=(void *)1000)
static HPy Point_z_get(HPyContext *ctx, HPy self, void *closure)
{

PointObject *point = PointObject_AsStruct(ctx, self);
return HPyLong_FromLong(ctx, point->x*10 + point->y + (long)(HPy_ssize_t)closure);

}

static int Point_z_set(HPyContext *ctx, HPy self, HPy value, void *closure)
{

PointObject *point = PointObject_AsStruct(ctx, self);
long current = point->x*10 + point->y + (long)(HPy_ssize_t)closure;
long target = HPyLong_AsLong(ctx, value); // assume no exception
point->y += target - current;
return 0;

}

It is also possible to define a get-descriptor or a set-descriptor by using HPy’s macros HPyDef_GET and
HPyDef_SET in the same way.

HPy also supports type slots. In this example, we will define slot HPy_tp_new (which corresponds to magic method
__new__) to initialize fields x and y when constructing the object:

HPyDef_SLOT(Point_new, HPy_tp_new)
static HPy Point_new_impl(HPyContext *ctx, HPy cls, const HPy *args,

HPy_ssize_t nargs, HPy kw)
{

long x, y;
if (!HPyArg_Parse(ctx, NULL, args, nargs, "ll", &x, &y))

return HPy_NULL;
PointObject *point;

(continues on next page)

18 Chapter 2. Full table of contents:

HPy, Release 0.9

(continued from previous page)

HPy h_point = HPy_New(ctx, cls, &point);
if (HPy_IsNull(h_point))

return HPy_NULL;
point->x = x;
point->y = y;
return h_point;

}

After everything was defined, we need to create a list of all defines such that we are able to eventually register them to
the type:

static HPyDef *Point_defines[] = {
&Point_x,
&Point_y,
&Point_z,
&Point_new,
&Point_foo,
NULL

};

Please note that it is required to terminate the list with NULL. We can now create the actual type specification by
appropriately filling an HPyType_Spec structure:

static HPyType_Spec Point_spec = {
.name = "simple_type.Point",
.basicsize = sizeof(PointObject),
.builtin_shape = PointObject_SHAPE,
.defines = Point_defines

};

First, we need to define the name of the type by setting a C string to member name. Since this type has a C structure,
we need to define the basicsize and best practice is to set it to sizeof(PointObject). Also best practice is
to set builtin_shape to PointObject_SHAPE where PointObject_SHAPE is generated by the previous
usage of macro HPyType_HELPERS(PointObject). Last but not least, we need to register the defines by setting
field defines to the previously defined array Point_defines.

The type specification for the simple type simple_type.Point represented in C by structure PointObject is
now complete. All that remains is to create the type object and add it to the module.

We will define a module execute slot, which is executed by the runtime right after the module is created. The
purpose of the execute slot is to initialize the newly created module object. We can then add the type by using
HPyHelpers_AddType():

HPyDef_SLOT(simple_exec, HPy_mod_exec)
static int simple_exec_impl(HPyContext *ctx, HPy m) {

if (!HPyHelpers_AddType(ctx, m, "Point", &Point_spec, NULL)) {
return -1;

}
return 0; // success

}

static HPyDef *mod_defines[] = {
&simple_exec, // 'simple_exec' is generated by the HPyDef_SLOT macro
NULL,

};

(continues on next page)

2.3. HPy API Introduction 19

HPy, Release 0.9

(continued from previous page)

static HPyModuleDef moduledef = {
.defines = mod_defines,
// ...

Also look at the full example at: examples/hpytype-example/simple_type.

Legacy types

A type whose struct starts with PyObject_HEAD (either directly by embedding it in the type struct or indirectly
by embedding another struct like PyLongObject) is a legacy type. A legacy type must set .builtin_shape =
HPyType_BuiltinShape_Legacy in its HPyType_Spec. The counterpart (i.e. a non-legacy type) is called
HPy pure type.

Legacy types are available to allow gradual porting of existing CPython extensions. It is possible to reuse existing
PyType_Slot entities (i.e. slots, methods, members, and get/set descriptors). The idea is that you can then migrate
one after each other while still running the tests.

The major restriction when using legacy types is that you cannot build a universal binary of your HPy extension (i.e.
you cannot use HPy Universal ABI). The resulting binary will be specific to the Python interpreter used for building.
Therefore, the goal should always be to fully migrate to HPy pure types.

A type with .legacy_slots != NULL is required to have HPyType_BuiltinShape_Legacy and to in-
clude PyObject_HEAD at the start of its struct. It would be easy to relax this requirement on CPython (where the
PyObject_HEAD fields are always present) but a large burden on other implementations (e.g. PyPy, GraalPy) where
a struct starting with PyObject_HEAD might not exist.

Types created via the old Python C API are automatically legacy types.

This section does not provide a dedicated example for how to create and use legacy types because the Porting Example
already shows how that is useful during incremental migration to HPy.

Inherit from a built-in type

HPy also supports inheriting from following built-in types:

• type

• int

• float

• unicode

• tuple

• list

Inheriting from built-in types is straight forward if you don’t have a C structure that represents your type. In other
words, you can simply inherit from, e.g., str if the basicsize in your type specification is 0. For example:

static HPyType_Spec Dummy_spec = {
.name = "builtin_type.Dummy",
.basicsize = 0

};

20 Chapter 2. Full table of contents:

HPy, Release 0.9

HPyType_SpecParam param[] = {
{ HPyType_SpecParam_Base, ctx->h_UnicodeType },
{ (HPyType_SpecParam_Kind)0 }

};
if (!HPyHelpers_AddType(ctx, module, "Dummy", &Dummy_spec, param))

return;

This case is simple because there is no Dummy_AsStruct since there is no associated C-level structure.

It is, however, more involved if your type also defines its own C structure (i.e. basicsize > 0 in the type specifi-
cation). In this case, it is strictly necessary to use the right built-in shape.

What is the right built-in shape?

This question is easy to answer: Each built-in shape (except of HPyType_BuiltinShape_Legacy) represents
a built-in type. You need to use the built-in shape that fits to the specified base class. The mapping is described in
HPyType_BuiltinShape.

Let’s do an example. Assume we want to define a type that stores the natural language of a unicode string to the unicode
object but the object should still just behave like a Python unicode object. So, we define struct LanguageObject:

typedef struct {
char *language;

} LanguageObject;
HPyType_HELPERS(LanguageObject, HPyType_BuiltinShape_Unicode)

As you can see, we already specify the built-in shape here using HPyType_HELPERS(LanguageObject,
HPyType_BuiltinShape_Unicode). Then, in the type specification, we do:

static HPyType_Spec Language_spec = {
.name = "builtin_type.Language",
.basicsize = sizeof(LanguageObject),
.builtin_shape = SHAPE(LanguageObject),
.defines = Language_defines

};

In the last step, when actually creating the type from the specification, we need to define that its base class is str
(aka. UnicodeType):

HPyType_SpecParam param[] = {
{ HPyType_SpecParam_Base, ctx->h_UnicodeType },
{ (HPyType_SpecParam_Kind)0 }

};
if (!HPyHelpers_AddType(ctx, module, "Language", &Language_spec, param))

return;

Function LanguageObject_AsStruct (which is generated by HPyType_HELPERS) will then return a pointer
to LanguageObject.

To summarize this: Specifying a type that inherits from a built-in type needs to be considered in three places:

1. Pass the appropriate built-in shape to HPyType_HELPERS.

2. Assign SHAPE(TYPE) to HPyType_Spec.builtin_shape.

3. Specify the desired base class in the type specification parameters.

For more information about the built-in shape and for a technical explanation for why it is required, see
HPyType_Spec.builtin_shape and HPyType_BuiltinShape.

2.3. HPy API Introduction 21

HPy, Release 0.9

2.3.5 More Examples

The Porting Example shows another complete example of HPy extension ported from Python/C API.

The HPy project space on GitHub contains forks of some popular Python extensions ported to HPy as a proof of
concept/feasibility studies, such as the Kiwi solver. Note that those forks may not be up to date with their upstream
projects or with the upstream HPy changes.

HPy unit tests

HPy usually has tests for each API function. This means that there is lots of examples available by looking at the tests.
However, the test source uses many macros and is hard to read. To overcome this we supply a utility to export clean
C sources for the tests. Since the HPy tests are not shipped by default, you need to clone the HPy repository from
GitHub:

> git clone https://github.com/hpyproject/hpy.git

After that, install all test requirements and dump the sources:

> cd hpy
> python3 -m pip install pytest filelock
> python3 -m pytest --dump-dir=test_sources test/

This will dump the generated test sources into folder test_sources. Note, that the tests won’t be executed but
skipped with an appropriate message.

2.4 Porting Guide

2.4.1 Porting PyObject * to HPy API constructs

While in CPython one always uses PyObject * to reference to Python objects, in HPy there are several types of
handles that should be used depending on the life-time of the handle: HPy, HPyField, and HPyGlobal.

• HPy represents short lived handles that live no longer than the duration of one call from Python to HPy extension
function. Rule of thumb: use for local variables, arguments, and return values.

• HPyField represents handles that are Python object struct fields, i.e., live in native memory attached to some
Python object.

• HPyGlobal represents handles stored in C global variables. HPyGlobal can provide isolation between
subinterpreters.

Warning: Never use a local variable of type HPyField, for any reason! If the GC kicks in, it might become
invalid and become a dangling pointer.

Warning: Never store HPy handles to a long-lived memory, for example: C global variables or Python object
structs.

The HPy/HPyField dichotomy might seem arbitrary at first, but it is needed to allow Python implementations to
use a moving GC, such as PyPy. It is easier to explain and understand the rules by thinking about how a moving GC
interacts with the C code inside an HPy extension.

22 Chapter 2. Full table of contents:

https://github.com/hpyproject/
https://github.com/hpyproject/kiwi-hpy

HPy, Release 0.9

It is worth remembering that during the collection phase, a moving GC might move an existing object to another
memory location, and in that case it needs to update all the places which store a pointer to it. In order to do so, it needs
to know where the pointers are. If there is a local C variable which is unknown to the GC but contains a pointer to a
GC-managed object, the variable will point to invalid memory as soon as the object is moved.

Back to HPy vs HPyField vs HPyGlobal:

• HPy handles must be used for all C local variables, function arguments and function return values. They are
supposed to be short-lived and closed as soon as they are no longer needed. The debug mode will report a
long-lived HPy as a potential memory leak.

• In PyPy and GraalPy, HPy handles are implemented using an indirection: they are indexes inside a big list of
GC-managed objects: this big list is tracked by the GC, so when an object moves its pointer is correctly updated.

• HPyField is for long-lived references, and the GC must be aware of their location in memory. In PyPy, an
HPyField is implemented as a direct pointer to the object, and thus we need a way to inform the GC where it
is in memory, so that it can update its value upon moving: this job is done by tp_traverse, as explained in
the next section.

• HPyGlobal is for long-lived references that are supposed to be closed implicitly when the module is unloaded
(once module unloading is actually implemented). HPyGlobal provides indirection to isolate subinterpreters.
Implementation wise, HPyGlobal will usually contain an index to a table with Python objects stored in the
interpreter state.

• On CPython without subinterpreters support, HPy, HPyGlobal, and HPyField are implemented as
PyObject *.

• On CPython with subinterpreters support, HPyGlobal will be implemented by an indirection through the
interpreter state. Note that thanks to the HPy design, switching between this and the more efficient implemen-
tation without subinterpreter support will not require rebuilding of the extension (in HPy universal mode), nor
rebuilding of CPython.

Note: If you write a custom type using HPyField, you MUST also write a tp_traverse slot. Note that this is
different than the old Python.h API, where you need tp_traverse only under certain conditions. See the next
section for more details.

Note: The contract of tp_traverse is that it must visit all members of type HPyField contained within given
struct, or more precisely owned by given Python object (in the sense of the owner argument to HPyField_Store),
and nothing more, nothing less. Some Python implementations may choose to not call the provided tp_traverse if
they know how to visit all members of type HPyField by other means (for example, when they track them internally
already). The debug mode will check this contract.

tp_traverse, tp_clear, Py_TPFLAGS_HAVE_GC

Let’s quote the Python.h documentation about GC support

Python’s support for detecting and collecting garbage which involves circular references requires support
from object types which are “containers” for other objects which may also be containers. Types which do
not store references to other objects, or which only store references to atomic types (such as numbers or
strings), do not need to provide any explicit support for garbage collection.

A good rule of thumb is that if your type contains PyObject * fields, you need to:

1. provide a tp_traverse slot;

2. provide a tp_clear slot;

2.4. Porting Guide 23

https://docs.python.org/3/c-api/gcsupport.html

HPy, Release 0.9

3. add the Py_TPFLAGS_GC to the tp_flags.

However, if you know that your PyObject * fields will contain only “atomic” types, you can avoid these steps.

In HPy the rules are slightly different:

1. if you have a field of type HPyField, you always MUST provide a tp_traverse. This is needed so that a
moving GC can track the relevant areas of memory. However, you MUST NOT rely on tp_traverse to be
called;

2. tp_clear does not exist. On CPython, HPy automatically generates one for you, by using tp_traverse to
know which are the fields to clear. Other implementations are free to ignore it, if it’s not needed;

3. HPy_TPFLAGS_GC is still needed, especially on CPython. If you don’t specify it, your type will not be
tracked by CPython’s GC and thus it might cause memory leaks if it’s part of a reference cycle. However, other
implementations are free to ignore the flag and track the objects anyway, if their GC implementation allows it.

tp_dealloc and Py_DECREF

Generally speaking, if you have one or more PyObject * fields in the old Python.h, you must provide a
tp_dealloc slot where you Py_DECREF all of them. In HPy this is not needed and will be handled automati-
cally by the system.

In particular, when running on top of CPython, HPy will automatically provide a tp_dealloc which decrefs all the
fields listed by tp_traverse.

See also, Deallocator slot Py_tp_dealloc.

2.4.2 Direct C API to HPy mappings

In many cases, migrating to HPy is as easy as just replacing a certain C API function by the appropriate HPy API
function. Table Safe API function mapping gives a mapping between C API and HPy API functions. This mapping is
generated together with the code for the CPython ABI mode, so it is guaranteed to be correct.

Table 1: Safe API function mapping
C API function HPY API function
PyBool_FromLong HPyBool_FromLong()
PyBytes_AS_STRING HPyBytes_AS_STRING()
PyBytes_AsString HPyBytes_AsString()
PyBytes_Check HPyBytes_Check()
PyBytes_FromString HPyBytes_FromString()
PyBytes_GET_SIZE HPyBytes_GET_SIZE()
PyBytes_Size HPyBytes_Size()
PyCallable_Check HPyCallable_Check()
PyCapsule_IsValid HPyCapsule_IsValid()
PyContextVar_Get HPyContextVar_Get()
PyContextVar_New HPyContextVar_New()
PyContextVar_Set HPyContextVar_Set()
PyDict_Check HPyDict_Check()
PyDict_Copy HPyDict_Copy()
PyDict_Keys HPyDict_Keys()
PyDict_New HPyDict_New()
PyErr_Clear HPyErr_Clear()
PyErr_ExceptionMatches HPyErr_ExceptionMatches()

continues on next page

24 Chapter 2. Full table of contents:

https://docs.python.org/3/c-api/bool.html#c.PyBool_FromLong
https://docs.python.org/3/c-api/bytes.html#c.PyBytes_AS_STRING
https://docs.python.org/3/c-api/bytes.html#c.PyBytes_AsString
https://docs.python.org/3/c-api/bytes.html#c.PyBytes_Check
https://docs.python.org/3/c-api/bytes.html#c.PyBytes_FromString
https://docs.python.org/3/c-api/bytes.html#c.PyBytes_GET_SIZE
https://docs.python.org/3/c-api/bytes.html#c.PyBytes_Size
https://docs.python.org/3/c-api/callable.html#c.PyCallable_Check
https://docs.python.org/3/c-api/capsule.html#c.PyCapsule_IsValid
https://docs.python.org/3/c-api/contextvars.html#c.PyContextVar_Get
https://docs.python.org/3/c-api/contextvars.html#c.PyContextVar_New
https://docs.python.org/3/c-api/contextvars.html#c.PyContextVar_Set
https://docs.python.org/3/c-api/dict.html#c.PyDict_Check
https://docs.python.org/3/c-api/dict.html#c.PyDict_Copy
https://docs.python.org/3/c-api/dict.html#c.PyDict_Keys
https://docs.python.org/3/c-api/dict.html#c.PyDict_New
https://docs.python.org/3/c-api/exceptions.html#c.PyErr_Clear
https://docs.python.org/3/c-api/exceptions.html#c.PyErr_ExceptionMatches

HPy, Release 0.9

Table 1 – continued from previous page
C API function HPY API function
PyErr_NewException HPyErr_NewException()
PyErr_NewExceptionWithDoc HPyErr_NewExceptionWithDoc()
PyErr_NoMemory HPyErr_NoMemory()
PyErr_SetFromErrnoWithFilename HPyErr_SetFromErrnoWithFilename()
PyErr_SetFromErrnoWithFilenameObjects HPyErr_SetFromErrnoWithFilenameObjects()
PyErr_SetObject HPyErr_SetObject()
PyErr_SetString HPyErr_SetString()
PyErr_WarnEx HPyErr_WarnEx()
PyErr_WriteUnraisable HPyErr_WriteUnraisable()
PyEval_EvalCode HPy_EvalCode()
PyEval_RestoreThread HPy_ReenterPythonExecution()
PyEval_SaveThread HPy_LeavePythonExecution()
PyFloat_AsDouble HPyFloat_AsDouble()
PyFloat_FromDouble HPyFloat_FromDouble()
PyImport_ImportModule HPyImport_ImportModule()
PyList_Append HPyList_Append()
PyList_Check HPyList_Check()
PyList_New HPyList_New()
PyLong_AsDouble HPyLong_AsDouble()
PyLong_AsLong HPyLong_AsLong()
PyLong_AsLongLong HPyLong_AsLongLong()
PyLong_AsSize_t HPyLong_AsSize_t()
PyLong_AsSsize_t HPyLong_AsSsize_t()
PyLong_AsUnsignedLong HPyLong_AsUnsignedLong()
PyLong_AsUnsignedLongLong HPyLong_AsUnsignedLongLong()
PyLong_AsUnsignedLongLongMask HPyLong_AsUnsignedLongLongMask()
PyLong_AsUnsignedLongMask HPyLong_AsUnsignedLongMask()
PyLong_AsVoidPtr HPyLong_AsVoidPtr()
PyLong_FromLong HPyLong_FromLong()
PyLong_FromLongLong HPyLong_FromLongLong()
PyLong_FromSize_t HPyLong_FromSize_t()
PyLong_FromSsize_t HPyLong_FromSsize_t()
PyLong_FromUnsignedLong HPyLong_FromUnsignedLong()
PyLong_FromUnsignedLongLong HPyLong_FromUnsignedLongLong()
PyNumber_Absolute HPy_Absolute()
PyNumber_Add HPy_Add()
PyNumber_And HPy_And()
PyNumber_Check HPyNumber_Check()
PyNumber_Divmod HPy_Divmod()
PyNumber_Float HPy_Float()
PyNumber_FloorDivide HPy_FloorDivide()
PyNumber_InPlaceAdd HPy_InPlaceAdd()
PyNumber_InPlaceAnd HPy_InPlaceAnd()
PyNumber_InPlaceFloorDivide HPy_InPlaceFloorDivide()
PyNumber_InPlaceLshift HPy_InPlaceLshift()
PyNumber_InPlaceMatrixMultiply HPy_InPlaceMatrixMultiply()
PyNumber_InPlaceMultiply HPy_InPlaceMultiply()
PyNumber_InPlaceOr HPy_InPlaceOr()
PyNumber_InPlacePower HPy_InPlacePower()

continues on next page

2.4. Porting Guide 25

https://docs.python.org/3/c-api/exceptions.html#c.PyErr_NewException
https://docs.python.org/3/c-api/exceptions.html#c.PyErr_NewExceptionWithDoc
https://docs.python.org/3/c-api/exceptions.html#c.PyErr_NoMemory
https://docs.python.org/3/c-api/exceptions.html#c.PyErr_SetFromErrnoWithFilename
https://docs.python.org/3/c-api/exceptions.html#c.PyErr_SetFromErrnoWithFilenameObjects
https://docs.python.org/3/c-api/exceptions.html#c.PyErr_SetObject
https://docs.python.org/3/c-api/exceptions.html#c.PyErr_SetString
https://docs.python.org/3/c-api/exceptions.html#c.PyErr_WarnEx
https://docs.python.org/3/c-api/exceptions.html#c.PyErr_WriteUnraisable
https://docs.python.org/3/c-api/veryhigh.html#c.PyEval_EvalCode
https://docs.python.org/3/c-api/init.html#c.PyEval_RestoreThread
https://docs.python.org/3/c-api/init.html#c.PyEval_SaveThread
https://docs.python.org/3/c-api/float.html#c.PyFloat_AsDouble
https://docs.python.org/3/c-api/float.html#c.PyFloat_FromDouble
https://docs.python.org/3/c-api/import.html#c.PyImport_ImportModule
https://docs.python.org/3/c-api/list.html#c.PyList_Append
https://docs.python.org/3/c-api/list.html#c.PyList_Check
https://docs.python.org/3/c-api/list.html#c.PyList_New
https://docs.python.org/3/c-api/long.html#c.PyLong_AsDouble
https://docs.python.org/3/c-api/long.html#c.PyLong_AsLong
https://docs.python.org/3/c-api/long.html#c.PyLong_AsLongLong
https://docs.python.org/3/c-api/long.html#c.PyLong_AsSize_t
https://docs.python.org/3/c-api/long.html#c.PyLong_AsSsize_t
https://docs.python.org/3/c-api/long.html#c.PyLong_AsUnsignedLong
https://docs.python.org/3/c-api/long.html#c.PyLong_AsUnsignedLongLong
https://docs.python.org/3/c-api/long.html#c.PyLong_AsUnsignedLongLongMask
https://docs.python.org/3/c-api/long.html#c.PyLong_AsUnsignedLongMask
https://docs.python.org/3/c-api/long.html#c.PyLong_AsVoidPtr
https://docs.python.org/3/c-api/long.html#c.PyLong_FromLong
https://docs.python.org/3/c-api/long.html#c.PyLong_FromLongLong
https://docs.python.org/3/c-api/long.html#c.PyLong_FromSize_t
https://docs.python.org/3/c-api/long.html#c.PyLong_FromSsize_t
https://docs.python.org/3/c-api/long.html#c.PyLong_FromUnsignedLong
https://docs.python.org/3/c-api/long.html#c.PyLong_FromUnsignedLongLong
https://docs.python.org/3/c-api/number.html#c.PyNumber_Absolute
https://docs.python.org/3/c-api/number.html#c.PyNumber_Add
https://docs.python.org/3/c-api/number.html#c.PyNumber_And
https://docs.python.org/3/c-api/number.html#c.PyNumber_Check
https://docs.python.org/3/c-api/number.html#c.PyNumber_Divmod
https://docs.python.org/3/c-api/number.html#c.PyNumber_Float
https://docs.python.org/3/c-api/number.html#c.PyNumber_FloorDivide
https://docs.python.org/3/c-api/number.html#c.PyNumber_InPlaceAdd
https://docs.python.org/3/c-api/number.html#c.PyNumber_InPlaceAnd
https://docs.python.org/3/c-api/number.html#c.PyNumber_InPlaceFloorDivide
https://docs.python.org/3/c-api/number.html#c.PyNumber_InPlaceLshift
https://docs.python.org/3/c-api/number.html#c.PyNumber_InPlaceMatrixMultiply
https://docs.python.org/3/c-api/number.html#c.PyNumber_InPlaceMultiply
https://docs.python.org/3/c-api/number.html#c.PyNumber_InPlaceOr
https://docs.python.org/3/c-api/number.html#c.PyNumber_InPlacePower

HPy, Release 0.9

Table 1 – continued from previous page
C API function HPY API function
PyNumber_InPlaceRemainder HPy_InPlaceRemainder()
PyNumber_InPlaceRshift HPy_InPlaceRshift()
PyNumber_InPlaceSubtract HPy_InPlaceSubtract()
PyNumber_InPlaceTrueDivide HPy_InPlaceTrueDivide()
PyNumber_InPlaceXor HPy_InPlaceXor()
PyNumber_Index HPy_Index()
PyNumber_Invert HPy_Invert()
PyNumber_Long HPy_Long()
PyNumber_Lshift HPy_Lshift()
PyNumber_MatrixMultiply HPy_MatrixMultiply()
PyNumber_Multiply HPy_Multiply()
PyNumber_Negative HPy_Negative()
PyNumber_Or HPy_Or()
PyNumber_Positive HPy_Positive()
PyNumber_Power HPy_Power()
PyNumber_Remainder HPy_Remainder()
PyNumber_Rshift HPy_Rshift()
PyNumber_Subtract HPy_Subtract()
PyNumber_TrueDivide HPy_TrueDivide()
PyNumber_Xor HPy_Xor()
PyObject_ASCII HPy_ASCII()
PyObject_Bytes HPy_Bytes()
PyObject_Call HPy_CallTupleDict()
PyObject_DelItem HPy_DelItem()
PyObject_GetAttr HPy_GetAttr()
PyObject_GetAttrString HPy_GetAttr_s()
PyObject_GetItem HPy_GetItem()
PyObject_HasAttr HPy_HasAttr()
PyObject_HasAttrString HPy_HasAttr_s()
PyObject_Hash HPy_Hash()
PyObject_IsTrue HPy_IsTrue()
PyObject_Length HPy_Length()
PyObject_Repr HPy_Repr()
PyObject_RichCompare HPy_RichCompare()
PyObject_RichCompareBool HPy_RichCompareBool()
PyObject_SetAttr HPy_SetAttr()
PyObject_SetAttrString HPy_SetAttr_s()
PyObject_SetItem HPy_SetItem()
PyObject_Str HPy_Str()
PyObject_Type HPy_Type()
PyObject_TypeCheck HPy_TypeCheck()
PyObject_Vectorcall HPy_Call()
PyObject_VectorcallMethod HPy_CallMethod()
PySequence_Contains HPy_Contains()
PySlice_AdjustIndices HPySlice_AdjustIndices()
PySlice_Unpack HPySlice_Unpack()
PyTuple_Check HPyTuple_Check()
PyType_IsSubtype HPyType_IsSubtype()
PyUnicode_AsASCIIString HPyUnicode_AsASCIIString()

continues on next page

26 Chapter 2. Full table of contents:

https://docs.python.org/3/c-api/number.html#c.PyNumber_InPlaceRemainder
https://docs.python.org/3/c-api/number.html#c.PyNumber_InPlaceRshift
https://docs.python.org/3/c-api/number.html#c.PyNumber_InPlaceSubtract
https://docs.python.org/3/c-api/number.html#c.PyNumber_InPlaceTrueDivide
https://docs.python.org/3/c-api/number.html#c.PyNumber_InPlaceXor
https://docs.python.org/3/c-api/number.html#c.PyNumber_Index
https://docs.python.org/3/c-api/number.html#c.PyNumber_Invert
https://docs.python.org/3/c-api/number.html#c.PyNumber_Long
https://docs.python.org/3/c-api/number.html#c.PyNumber_Lshift
https://docs.python.org/3/c-api/number.html#c.PyNumber_MatrixMultiply
https://docs.python.org/3/c-api/number.html#c.PyNumber_Multiply
https://docs.python.org/3/c-api/number.html#c.PyNumber_Negative
https://docs.python.org/3/c-api/number.html#c.PyNumber_Or
https://docs.python.org/3/c-api/number.html#c.PyNumber_Positive
https://docs.python.org/3/c-api/number.html#c.PyNumber_Power
https://docs.python.org/3/c-api/number.html#c.PyNumber_Remainder
https://docs.python.org/3/c-api/number.html#c.PyNumber_Rshift
https://docs.python.org/3/c-api/number.html#c.PyNumber_Subtract
https://docs.python.org/3/c-api/number.html#c.PyNumber_TrueDivide
https://docs.python.org/3/c-api/number.html#c.PyNumber_Xor
https://docs.python.org/3/c-api/object.html#c.PyObject_ASCII
https://docs.python.org/3/c-api/object.html#c.PyObject_Bytes
https://docs.python.org/3/c-api/call.html#c.PyObject_Call
https://docs.python.org/3/c-api/object.html#c.PyObject_DelItem
https://docs.python.org/3/c-api/object.html#c.PyObject_GetAttr
https://docs.python.org/3/c-api/object.html#c.PyObject_GetAttrString
https://docs.python.org/3/c-api/object.html#c.PyObject_GetItem
https://docs.python.org/3/c-api/object.html#c.PyObject_HasAttr
https://docs.python.org/3/c-api/object.html#c.PyObject_HasAttrString
https://docs.python.org/3/c-api/object.html#c.PyObject_Hash
https://docs.python.org/3/c-api/object.html#c.PyObject_IsTrue
https://docs.python.org/3/c-api/object.html#c.PyObject_Length
https://docs.python.org/3/c-api/object.html#c.PyObject_Repr
https://docs.python.org/3/c-api/object.html#c.PyObject_RichCompare
https://docs.python.org/3/c-api/object.html#c.PyObject_RichCompareBool
https://docs.python.org/3/c-api/object.html#c.PyObject_SetAttr
https://docs.python.org/3/c-api/object.html#c.PyObject_SetAttrString
https://docs.python.org/3/c-api/object.html#c.PyObject_SetItem
https://docs.python.org/3/c-api/object.html#c.PyObject_Str
https://docs.python.org/3/c-api/object.html#c.PyObject_Type
https://docs.python.org/3/c-api/object.html#c.PyObject_TypeCheck
https://docs.python.org/3/c-api/call.html#c.PyObject_Vectorcall
https://docs.python.org/3/c-api/call.html#c.PyObject_VectorcallMethod
https://docs.python.org/3/c-api/sequence.html#c.PySequence_Contains
https://docs.python.org/3/c-api/slice.html#c.PySlice_AdjustIndices
https://docs.python.org/3/c-api/slice.html#c.PySlice_Unpack
https://docs.python.org/3/c-api/tuple.html#c.PyTuple_Check
https://docs.python.org/3/c-api/type.html#c.PyType_IsSubtype
https://docs.python.org/3/c-api/unicode.html#c.PyUnicode_AsASCIIString

HPy, Release 0.9

Table 1 – continued from previous page
C API function HPY API function
PyUnicode_AsLatin1String HPyUnicode_AsLatin1String()
PyUnicode_AsUTF8AndSize HPyUnicode_AsUTF8AndSize()
PyUnicode_AsUTF8String HPyUnicode_AsUTF8String()
PyUnicode_Check HPyUnicode_Check()
PyUnicode_DecodeASCII HPyUnicode_DecodeASCII()
PyUnicode_DecodeFSDefault HPyUnicode_DecodeFSDefault()
PyUnicode_DecodeFSDefaultAndSize HPyUnicode_DecodeFSDefaultAndSize()
PyUnicode_DecodeLatin1 HPyUnicode_DecodeLatin1()
PyUnicode_EncodeFSDefault HPyUnicode_EncodeFSDefault()
PyUnicode_FromEncodedObject HPyUnicode_FromEncodedObject()
PyUnicode_FromString HPyUnicode_FromString()
PyUnicode_FromWideChar HPyUnicode_FromWideChar()
PyUnicode_ReadChar HPyUnicode_ReadChar()
PyUnicode_Substring HPyUnicode_Substring()
Py_FatalError HPy_FatalError()

2.4.3 Reference Counting Py_INCREF and Py_DECREF

The equivalents of Py_INCREF and Py_DECREF are essentially HPy_Dup() and HPy_Close(), respectively.
The main difference is that HPy_Dup() gives you a new handle to the same object which means that the two handles
may be different if comparing them with memcmp but still reference the same object. As a consequence, you may
close a handle only once, i.e., you cannot call HPy_Close() twice on the same HPy handle, even if returned from
HPy_Dup. For examples, see also sections Handles and Handles vs PyObject *

2.4.4 Calling functions PyObject_Call and PyObject_CallObject

Both PyObject_Call and PyObject_CallObject are replaced by HPy_CallTupleDict(callable,
args, kwargs) in which either or both of args and kwargs may be null handles.

PyObject_Call(callable, args, kwargs) becomes:

HPy result = HPy_CallTupleDict(ctx, callable, args, kwargs);

PyObject_CallObject(callable, args) becomes:

HPy result = HPy_CallTupleDict(ctx, callable, args, HPy_NULL);

If args is not a handle to a tuple or kwargs is not a handle to a dictionary, HPy_CallTupleDict will return
HPy_NULL and raise a TypeError. This is different to PyObject_Call and PyObject_CallObject which
may segfault instead.

2.4. Porting Guide 27

https://docs.python.org/3/c-api/unicode.html#c.PyUnicode_AsLatin1String
https://docs.python.org/3/c-api/unicode.html#c.PyUnicode_AsUTF8AndSize
https://docs.python.org/3/c-api/unicode.html#c.PyUnicode_AsUTF8String
https://docs.python.org/3/c-api/unicode.html#c.PyUnicode_Check
https://docs.python.org/3/c-api/unicode.html#c.PyUnicode_DecodeASCII
https://docs.python.org/3/c-api/unicode.html#c.PyUnicode_DecodeFSDefault
https://docs.python.org/3/c-api/unicode.html#c.PyUnicode_DecodeFSDefaultAndSize
https://docs.python.org/3/c-api/unicode.html#c.PyUnicode_DecodeLatin1
https://docs.python.org/3/c-api/unicode.html#c.PyUnicode_EncodeFSDefault
https://docs.python.org/3/c-api/unicode.html#c.PyUnicode_FromEncodedObject
https://docs.python.org/3/c-api/unicode.html#c.PyUnicode_FromString
https://docs.python.org/3/c-api/unicode.html#c.PyUnicode_FromWideChar
https://docs.python.org/3/c-api/unicode.html#c.PyUnicode_ReadChar
https://docs.python.org/3/c-api/unicode.html#c.PyUnicode_Substring
https://docs.python.org/3/c-api/sys.html#c.Py_FatalError

HPy, Release 0.9

2.4.5 Calling Protocol

Both the tp_call and vectorcall calling protocols are replaced by HPy’s calling protocol. This is done by defining slot
HPy_tp_call. HPy uses only one calling convention which is similar to the vectorcall calling convention. In the
following example, we implement a call function for a simple Euclidean vector type. The function computes the dot
product of two vectors.

typedef struct {
long x;
long y;

} EuclideanVectorObject;
HPyType_HELPERS(EuclideanVectorObject)

HPyDef_SLOT(call, HPy_tp_call)
static HPy
call_impl(HPyContext *ctx, HPy self, const HPy *args, size_t nargs,

HPy kwnames)
{

static const char *keywords[] = { "x1", "y1", NULL };
long x1, y1;
HPyTracker ht;
if (!HPyArg_ParseKeywords(ctx, &ht, args, nargs, kwnames, "ll", keywords,

&x1, &y1)) {
return HPy_NULL;

}
EuclideanVectorObject *data = EuclideanVectorObject_AsStruct(ctx, self);
return HPyLong_FromLong(ctx, data->x * x1 + data->y * y1);

}

Positional and keyword arguments are passed as C array args. Argument nargs specifies the number of positional
arguments. Argument kwnames is a tuple containing the names of the keyword arguments. The keyword argument
values are appended to positional arguments and start at args[nargs] (if there are any).

In the above example, function call_impl will be used by default to call all instances of the corresponding
type. It is also possible to install (maybe specialized) call function implementations per instances by using function
HPy_SetCallFunction(). This needs to be done in the constructor of an object. For example:

HPyDef_CALL_FUNCTION(special_call)
static HPy
special_call_impl(HPyContext *ctx, HPy self, const HPy *args, size_t nargs,

HPy kwnames)
{

HPy tmp = call_impl(ctx, self, args, nargs, kwnames);
HPy res = HPy_Negative(ctx, tmp);
HPy_Close(ctx, tmp);
return res;

}

HPyDef_SLOT(new, HPy_tp_new)
static HPy
new_impl(HPyContext *ctx, HPy cls, const HPy *args, HPy_ssize_t nargs, HPy kw)
{

static const char *keywords[] = { "x", "y", "use_special_call", NULL };
HPyTracker ht;
long x, y;
HPy use_special_call = ctx->h_False;
if (!HPyArg_ParseKeywordsDict(ctx, &ht, args, nargs, kw, "ll|O", keywords,

(continues on next page)

28 Chapter 2. Full table of contents:

HPy, Release 0.9

(continued from previous page)

&x, &y, &use_special_call)) {
return HPy_NULL;

}
EuclideanVectorObject *vector;
HPy h_point = HPy_New(ctx, cls, &vector);
if (HPy_IsNull(h_point)) {

HPyTracker_Close(ctx, ht);
return HPy_NULL;

}
if (HPy_IsTrue(ctx, use_special_call) &&

HPy_SetCallFunction(ctx, h_point, &special_call) < 0) {
HPyTracker_Close(ctx, ht);
HPy_Close(ctx, h_point);
return HPy_NULL;

}
HPyTracker_Close(ctx, ht);
vector->x = x;
vector->y = y;
return h_point;

}

Limitations

1. It is not possible to use slot HPy_tp_call for a var object (i.e. if HPyType_Spec.itemsize is greater
0). Reason: HPy installs a hidden field in the object’s data to store the call function pointer which is appended
to everything else. In case of EuclideanVectorObject, a field is implicitly appended after member y.
This is not possible for var objects because the variable part will also start after the fixed members.

2. It is also not possible to use slot HPy_tp_call with a legacy type that inherits the basicsize (i.e. if
HPyType_Spec.basicsize is 0) for the same reason as above.

To overcome these limitations, it is still possible to manually embed a field for the call function pointer in a type’s
C struct and tell HPy where this field is. In this case, it is always necessary to set the call function pointer using
HPy_SetCallFunction() in the object’s constructor. This procedure is less convenient than just using slot
HPy_tp_cal but still not hard to use. Consider following example. We define a struct FooObject and declare
field HPyCallFunction call_func which will be used to store the call function’s pointer. We need to register
the offset of that field with member __vectorcalloffset__ and in the constructor Foo_new, we assign the call
function Foo_call_func.

typedef struct {
void *a;
HPyCallFunction call_func;
void *b;

} FooObject;
HPyType_HELPERS(FooObject)

HPyDef_MEMBER(Foo_call_func_offset, "__vectorcalloffset__", HPyMember_HPYSSIZET,
offsetof(FooObject, call_func), .readonly=1)

HPyDef_CALL_FUNCTION(Foo_call_func)
static HPy
Foo_call_func_impl(HPyContext *ctx, HPy self, const HPy *args, size_t nargs,

HPy kwnames)
{

return HPyUnicode_FromString(ctx,
(continues on next page)

2.4. Porting Guide 29

HPy, Release 0.9

(continued from previous page)

"hello manually initialized call function");
}

HPyDef_SLOT(Foo_new, HPy_tp_new)
static HPy Foo_new_impl(HPyContext *ctx, HPy cls, const HPy *args,

HPy_ssize_t nargs, HPy kw)
{

FooObject *data;
HPy h_obj = HPy_New(ctx, cls, &data);
if (HPy_IsNull(h_obj))

return HPy_NULL;
data->call_func = Foo_call_func;
return h_obj;

}

Note: In contrast to CPython’s vectorcall protocol, nargs will never have flag
PY_VECTORCALL_ARGUMENTS_OFFSET set. It will only be the positional argument count.

Incremental Migration to HPy’s Calling Protocol

In order to support incremental migration, HPy provides helper function
HPyHelpers_PackArgsAndKeywords() that converts from HPy’s calling convention to CPython’s tp_call
calling convention. Consider following example:

// function using legacy 'tp_call' calling convention
static HPy
Pack_call_legacy(HPyContext *ctx, HPy self, HPy args, HPy kwd)
{

// use 'args' and 'kwd'
return HPy_Dup(ctx, ctx->h_None);

}

// function using HPy calling convention
HPyDef_SLOT(Pack_call, HPy_tp_call)
static HPy
Pack_call_impl(HPyContext *ctx, HPy self, const HPy *args, size_t nargs,

HPy kwnames)
{

HPy args_tuple, kwd;
HPy result;
if (!HPyHelpers_PackArgsAndKeywords(ctx, args, nargs, kwnames,

&args_tuple, &kwd)) {
return HPy_NULL;

}
result = Pack_call_legacy(ctx, self, args_tuple, kwd);
HPy_Close(ctx, args_tuple);
HPy_Close(ctx, kwd);
return result;

}

In this example, args, nargs, and kwnames are used to create a tuple of positional arguments args_tuple and
a keyword arguments dictionary kwd.

30 Chapter 2. Full table of contents:

HPy, Release 0.9

2.4.6 PyModule_AddObject

PyModule_AddObject is replaced with a regular HPy_SetAttr_s(). There is no HPyModule_AddObject
function because it has an unusual refcount behavior (stealing a reference but only when it returns 0).

2.4.7 Deallocator slot Py_tp_dealloc

Py_tp_dealloc essentially becomes HPy_tp_destroy. The name intentionally differs because there are major
differences: while the slot function of Py_tp_dealloc receives the full object (which makes it possible to resurrect
it) and while there are no restrictions on what you may call in the C API deallocator, you must not do that in HPy’s
deallocator.

The two major restrictions apply to the slot function of HPy_tp_destroy:

1. The function must be thread-safe.

2. The function must not call into the interpreter.

The idea is, that HPy_tp_destroy just releases native resources (e.g. by using C lib’s free function). There-
fore, it only receives a pointer to the object’s native data (and not a handle to the object) and it does not receive an
HPyContext pointer argument.

For the time being, HPy will support the HPy_tp_finalize slot where those tight restrictions do not apply at the
(significant) cost of performance.

2.4.8 Special slots Py_tp_methods, Py_tp_members, and Py_tp_getset

There is no direct replacement for C API slots Py_tp_methods, Py_tp_members, and Py_tp_getset because
they are no longer needed. Methods, members, and get/set descriptors are specified flatly together with the other
slots, using the standard mechanisms of HPyDef_METH , HPyDef_MEMBER, and HPyDef_GETSET. The resulting
HPyDef structures are then accumulated in HPyType_Spec.defines.

2.4.9 Creating lists and tuples

The C API way of creating lists and tuples is to create an empty list or tuple object using PyList_New(n)
or PyTuple_New(n), respectively, and then to fill the empty object using PyList_SetItem /
PyList_SET_ITEM or PyTuple_SetItem / PyTuple_SET_ITEM, respectively.

This is in particular problematic for tuples because they are actually immutable. HPy goes a different way and provides
a dedicated builder API to avoid the (temporary) inconsistent state during object initialization.

Long story short, doing the same in HPy with builders is still very simple and straight forward. Following an example
for creating a list:

PyObject *list = PyList_New(5);
if (list == NULL)

return NULL; /* error */
PyList_SET_ITEM(list, 0, item0);
PyList_SET_ITEM(list, 1, item0);
...
PyList_SET_ITEM(list, 4, item0);
/* now 'list' is ready to use */

becomes

2.4. Porting Guide 31

HPy, Release 0.9

HPyListBuilder builder = HPyListBuilder_New(ctx, 5);
HPyListBuilder_Set(ctx, builder, 0, h_item0);
HPyListBuilder_Set(ctx, builder, 1, h_item1);
...
HPyListBuilder_Set(ctx, builder, 4, h_item4);
HPy h_list = HPyListBuilder_Build(ctx, builder);
if (HPy_IsNull(h_list))

return HPy_NULL; /* error */

Note: In contrast to PyList_SetItem, PyList_SET_ITEM, PyTuple_SetItem, and
PyTuple_SET_ITEM, the builder functions HPyListBuilder_Set() and HPyTupleBuilder_Set() are
NOT stealing references. It is necessary to close the passed item handles (e.g. h_item0 in the above example) if
they are no longer needed.

If an error occurs during building the list or tuple, it is necessary to call HPyListBuilder_Cancel() or
HPyTupleBuilder_Cancel(), respectively, to avoid memory leaks.

For details, see the API reference documentation Building tuples and lists.

2.4.10 Buffers

The buffer API in HPy is implemented using the HPy_buffer struct, which looks very similar to Py_buffer (refer
to the CPython documentation for the meaning of the fields):

typedef struct {
void *buf;
HPy obj;
HPy_ssize_t len;
HPy_ssize_t itemsize;
int readonly;
int ndim;
char *format;
HPy_ssize_t *shape;
HPy_ssize_t *strides;
HPy_ssize_t *suboffsets;
void *internal;

} HPy_buffer;

Buffer slots for HPy types are specified using slots HPy_bf_getbuffer and HPy_bf_releasebuffer
on all supported Python versions, even though the matching PyType_Spec slots, Py_bf_getbuffer and
Py_bf_releasebuffer, are only available starting from CPython 3.9.

2.4.11 Multi-phase Module Initialization

HPy supports only multi-phase module initialization (PEP 451). This means that the module object is typically created
by interpreter from the HPyModuleDef specification and there is no “init” function. However, the module can define
one or more HPy_mod_exec slots, which will be executed just after the module object is created. Inside the code of
those slots, one can usually perform the same initialization as before.

Example of legacy single phase module initialization that uses Python/C API:

32 Chapter 2. Full table of contents:

https://docs.python.org/3.6/c-api/buffer.html#buffer-structure

HPy, Release 0.9

static struct PyModuleDef mod_def = {
PyModuleDef_HEAD_INIT,
.m_name = "legacyinit",
.m_size = -1

};

PyMODINIT_FUNC
PyInit_legacyinit(void)
{

PyObject *mod = PyModule_Create(&mod_def);
if (mod == NULL) return NULL;

// Some initialization: add types, constants, ...

return mod;
}

The same code structure ported to HPy and multi-phase module initialization:

HPyDef_SLOT(my_exec, HPy_mod_exec)
int my_exec_impl(HPyContext *ctx, HPy mod) {

// Some initialization: add types, constants, ...

return 0; // success
}

static HPyDef *Methods[] = {
&my_exec, // HPyDef_SLOT macro generated `my_exec` for us
NULL,

};

static HPyModuleDef mod_def = {
.defines = Methods

};

HPy_MODINIT(hpyinit, mod_def)

2.5 Porting Example

HPy supports incrementally porting an existing C extension from the original Python C API to the HPy API and to
have the extension compile and run at each step along the way.

Here we walk through porting a small C extension that implements a Point type with some simple methods (a norm
and a dot product). The Point type is minimal, but does contain additional C attributes (the x and y values of the
point) and an attribute (obj) that contains a Python object (that we will need to convert from a PyObject * to an
HPyField).

There is a separate C file illustrating each step of the incremental port:

• steps/step_00_c_api: The original C API version that we are going to port.

• steps/step_01_hpy_legacy: A possible first step where all methods still receive PyObject * arguments and
may still cast them to PyPointObject * if they are instances of Point.

• steps/step_02_hpy_legacy: Shows how to transition some methods to HPy methods that receive HPy handles as
arguments while still supporting legacy methods that receive PyObject * arguments.

2.5. Porting Example 33

HPy, Release 0.9

• steps/step_03_hpy_final: The completed port to HPy where all methods receive HPy handles and
PyObject_HEAD has been removed.

Take a moment to read through steps/step_00_c_api. Then, once you’re ready, keep reading.

Each section below corresponds to one of the three porting steps above:

• Step 01: Converting the module to a (legacy) HPy module

• Step 02: Transition some methods to HPy

• Step 03: Complete the port to HPy

Note: The steps used here are one approach to porting a module. The specific steps are not required. They’re just an
example approach.

2.5.1 Step 01: Converting the module to a (legacy) HPy module

First for the easy bit – let’s include hpy.h:

3 #include <hpy.h>

We’d like to differentiate between references to PyPointObject that have been ported to HPy and those
that haven’t, so let’s rename it to PointObject and alias PyPointObject to PointObject. We’ll keep
PyPointObject for the instances that haven’t been ported yet (the legacy ones) and use PointObject where
we have ported the references:

16 typedef struct {
17 // PyObject_HEAD is required while legacy_slots are still used
18 // but can (and should) be removed once the port to HPy is completed.
19 PyObject_HEAD
20 double x;
21 double y;
22 PyObject *obj;
23 } PointObject;

29 typedef PointObject PyPointObject;

For this step, all references will be to PyPointObject – we’ll only start porting references in the next step.

Let’s also call HPyType_LEGACY_HELPERS to define some helper functions for use with the PointObject
struct:

37 HPyType_LEGACY_HELPERS(PointObject)

Again, we won’t use these helpers in this step – we’re just setting things up for later.

Now for the big steps.

We need to replace PyType_Spec for the Point type with the equivalent HPyType_Spec:

131 // HPy type methods and slots (no methods or slots have been ported yet)
132 static HPyDef *point_defines[] = {
133 NULL

(continues on next page)

34 Chapter 2. Full table of contents:

HPy, Release 0.9

(continued from previous page)

134 };
135

136 static HPyType_Spec Point_Type_spec = {
137 .name = "point_hpy_legacy_1.Point",
138 .basicsize = sizeof(PointObject),
139 .itemsize = 0,
140 .flags = HPy_TPFLAGS_DEFAULT,
141 .builtin_shape = SHAPE(PointObject),
142 .legacy_slots = Point_legacy_slots,
143 .defines = point_defines,
144 };
145

146 // HPy supports only multiphase module initialization, so we must migrate the
147 // single phase initialization by extracting the code that populates the module
148 // object with attributes into a separate 'exec' slot. The module is not
149 // created manually by calling API like PyModule_Create, but the runtime creates
150 // the module for us from the specification in HPyModuleDef, and we can provide
151 // additional slots to populate the module before its initialization is finalized
152 HPyDef_SLOT(module_exec, HPy_mod_exec)
153 static int module_exec_impl(HPyContext *ctx, HPy mod)
154 {
155 HPy point_type = HPyType_FromSpec(ctx, &Point_Type_spec, NULL);
156 if (HPy_IsNull(point_type))
157 return -1;
158 HPy_SetAttr_s(ctx, mod, "Point", point_type);
159 return 0;
160 }

Initially the list of ported methods in point_defines is empty and all of the methods are still in Point_slots
which we have renamed to Point_legacy_slots for clarity.

SHAPE(PointObject) is a macro that retrieves the shape of PointObject as it was defined by the
HPyType_LEGACY_HELPERS macro and will be set to HPyType_BuiltinShape_Legacy until we replace
the legacy macro with the HPyType_HELPERS one. Any type with legacy_slots or that still includes
PyObject_HEAD in its struct should have .builtin_shape set to HPyType_BuiltinShape_Legacy.

Similarly we replace PyModuleDef with HPyModuleDef:

162 // Legacy module methods (the "dot" method is still a PyCFunction)
163 static PyMethodDef PointModuleLegacyMethods[] = {
164 {"dot", (PyCFunction)dot, METH_VARARGS, "Dot product."},
165 {NULL, NULL, 0, NULL}
166 };
167

168 // HPy module methods: no regular methods have been ported yet,
169 // but we add the module execute slot
170 static HPyDef *module_defines[] = {
171 &module_exec,
172 NULL
173 };
174

175 static HPyModuleDef moduledef = {
176 // .name = "step_01_hpy_legacy",
177 // ^-- .name is not needed for multiphase module initialization,
178 // it is always taken from the ModuleSpec
179 .doc = "Point module (Step 1; All legacy methods)",
180 .size = 0,

(continues on next page)

2.5. Porting Example 35

HPy, Release 0.9

(continued from previous page)

181 .legacy_methods = PointModuleLegacyMethods,
182 .defines = module_defines,
183 };

Like the type, the list of ported methods in module_defines is initially almost empty: all the regular methods are
still in PointModuleMethods which has been renamed to PointModuleLegacyMethods. However, because
HPy supports only multiphase module initialization, we must convert our module initialization code to an “exec” slot
on the module and add that slot to module_defines.

Now all that is left is to replace the module initialization function with one that uses HPy_MODINIT. The first
argument is the name of the extension, i.e., what was XXX in PyInit_XXX, and the second argument is the
HPyModuleDef.

189 HPy_MODINIT(step_01_hpy_legacy, moduledef)

And we’re done!

Instead of the PyInit_XXX, we now have an “exec” slot on the module. We implement it with a C function that
that takes an HPyContext *ctx and HPy mod as arguments. The ctx must be forwarded as the first argument to
calls to HPy API methods. The mod argument is a handle for the module object. The runtime creates the module for
us from the provided HPyModuleDef. There is no need to call API like PyModule_Create explicitly.

Next step is to replace PyType_FromSpec by HPyType_FromSpec.

HPy_SetAttr_s is used to add the Point class to the module. HPy requires no special PyModule_AddObject
method.

152 HPyDef_SLOT(module_exec, HPy_mod_exec)
153 static int module_exec_impl(HPyContext *ctx, HPy mod)
154 {
155 HPy point_type = HPyType_FromSpec(ctx, &Point_Type_spec, NULL);
156 if (HPy_IsNull(point_type))
157 return -1;
158 HPy_SetAttr_s(ctx, mod, "Point", point_type);
159 return 0;
160 }

2.5.2 Step 02: Transition some methods to HPy

In the previous step we put in place the type and module definitions required to create an HPy extension module. In
this step we will port some individual methods.

Let us start by migrating Point_traverse. First we need to change PyObject *obj in the PointObject
struct to HPyField obj:

16 typedef struct {
17 // PyObject_HEAD is required while legacy methods still access
18 // PointObject and should be removed once the port to HPy is completed.
19 PyObject_HEAD
20 double x;
21 double y;
22 // HPy handles are shortlived to support all GC strategies
23 // For that reason, PyObject* in C structs are replaced by HPyField
24 HPyField obj;
25 } PointObject;

36 Chapter 2. Full table of contents:

HPy, Release 0.9

HPy handles can only be short-lived – i.e. local variables, arguments to functions or return values. HPyField is
the way to store long-lived references to Python objects. For more information, please refer to the documentation of
HPyField.

Now we can update Point_traverse:

40 HPyDef_SLOT(Point_traverse, HPy_tp_traverse)
41 int Point_traverse_impl(void *self, HPyFunc_visitproc visit, void *arg)
42 {
43 HPy_VISIT(&((PointObject*)self)->obj);
44 return 0;
45 }

In the first line we used the HPyDef_SLOT macro to define a small structure that describes the slot being im-
plemented. The first argument, Point_traverse, is the name to assign the structure to. By convention, the
HPyDef_SLOT macro expects a function called Point_traverse_impl implementing the slot. The second
argument, HPy_tp_traverse, specifies the kind of slot.

This is a change from how slots are defined in the old C API. In the old API, the kind of slot is only specified much
lower down in Point_legacy_slots. In HPy the implementation and kind are defined in one place using a syntax
reminiscent of Python decorators.

The implementation of traverse is now a bit simpler than in the old C API. We no longer need to visit
Py_TYPE(self) and need only HPy_VISIT self->obj. HPy ensures that interpreter knows that the type of the
instance is still referenced.

Only struct members of type HPyField can be visited with HPy_VISIT, which is why we needed to convert obj
to an HPyField before we implemented the HPy traverse.

Next we must update Point_init to store the value of obj as an HPyField:

48 HPyDef_SLOT(Point_init, HPy_tp_init)
49 int Point_init_impl(HPyContext *ctx, HPy self, const HPy *args,
50 HPy_ssize_t nargs, HPy kw)
51 {
52 static const char *kwlist[] = {"x", "y", "obj", NULL};
53 PointObject *p = PointObject_AsStruct(ctx, self);
54 p->x = 0.0;
55 p->y = 0.0;
56 HPy obj = HPy_NULL;
57 HPyTracker ht;
58 if (!HPyArg_ParseKeywordsDict(ctx, &ht, args, nargs, kw, "|ddO", kwlist,
59 &p->x, &p->y, &obj))
60 return -1;
61 if (HPy_IsNull(obj))
62 obj = ctx->h_None;
63 /* INCREF not needed because HPyArg_ParseKeywordsDict does not steal a
64 reference */
65 HPyField_Store(ctx, self, &p->obj, obj);
66 HPyTracker_Close(ctx, ht);
67 return 0;
68 }

There are a few new HPy constructs used here:

• The kind of the slot passed to HPyDef_SLOT is HPy_tp_init.

• PointObject_AsStruct is defined by HPyType_LEGACY_HELPERS and returns an instance of the
PointObject struct. Because we still include PyObject_HEAD at the start of the struct this is still a

2.5. Porting Example 37

HPy, Release 0.9

valid PyObject * but once we finish the port the struct will no longer contain PyObject_HEAD and this
will just be an ordinary C struct with no memory overhead!

• We use HPyTracker when parsing the arguments with HPyArg_ParseKeywords. The HPyTracker
keeps track of open handles so that they can be closed easily at the end with HPyTracker_Close.

• HPyArg_ParseKeywords is the equivalent of PyArg_ParseTupleAndKeywords. Note that the HPy
version does not steal a reference like the Python version.

• HPyField_Store is used to store a reference to obj in the struct. The arguments are the context (ctx), a
handle to the object that owns the reference (self), the address of the HPyField (&p->obj), and the handle
to the object (obj).

Note: An HPyTracker is not strictly needed for HPyArg_ParseKeywords in Point_init. The arguments x
and y are C floats (so there are no handles to close) and the handle stored in obj was passed in to the Point_init
as an argument and so should not be closed.

We showed the tracker here to demonstrate its use. You can read more about argument parsing in the API docs.

If a tracker is needed and one is not provided, HPyArg_ParseKeywords will return an error.

The last update we need to make for the change to HPyField is to migrate Point_obj_get which retrieves obj
from the stored HPyField:

71 HPyDef_GET(Point_obj, "obj", .doc="Associated object.")
72 HPy Point_obj_get(HPyContext *ctx, HPy self, void* closure)
73 {
74 PointObject *p = PointObject_AsStruct(ctx, self);
75 return HPyField_Load(ctx, self, p->obj);
76 }

Above we have used PointObject_AsStruct again, and then HPyField_Load to retrieve the value of obj
from the HPyField.

We’ve now finished all of the changes needed by introducing HPyField. We could stop here, but let’s migrate one
ordinary method, Point_norm, to end off this stage of the port:

79 HPyDef_METH(Point_norm, "norm", HPyFunc_NOARGS, .doc="Distance from origin.")
80 HPy Point_norm_impl(HPyContext *ctx, HPy self)
81 {
82 PointObject *p = PointObject_AsStruct(ctx, self);
83 double norm;
84 norm = sqrt(p->x * p->x + p->y * p->y);
85 return HPyFloat_FromDouble(ctx, norm);
86 }

To define a method we use HPyDef_METH instead of HPyDef_SLOT. HPyDef_METH creates a small structure
defining the method. The first argument is the name to assign to the structure (Point_norm). The second is
the Python name of the method (norm). The third specifies the method signature (HPyFunc_NOARGS – i.e. no
additional arguments in this case). The last provides the docstring. The macro then expects a function named
Point_norm_impl implementing the method.

The rest of the implementation remains similar, except that we use HPyFloat_FromDouble to create a handle to a
Python float containing the result (i.e. the distance of the point from the origin).

Now we are done and just have to remove the old implementations from Point_legacy_slots and add them to
point_defines:

38 Chapter 2. Full table of contents:

HPy, Release 0.9

121 static HPyDef *point_defines[] = {
122 &Point_init,
123 &Point_norm,
124 &Point_obj,
125 &Point_traverse,
126 NULL
127 };

2.5.3 Step 03: Complete the port to HPy

In this step we’ll complete the port. We’ll no longer include Python, remove PyObject_HEAD from the
PointObject struct, and port the remaining methods.

First, let’s remove the import of Python.h:

2 // #include <Python.h> // disallow use of the old C API

And PyObject_HEAD from the struct:

15 typedef struct {
16 // PyObject_HEAD is no longer available in PointObject. In CPython,
17 // of course, it still exists but is inaccessible from HPy_AsStruct. In
18 // other Python implementations (e.g. PyPy) it might no longer exist at
19 // all.
20 double x;
21 double y;
22 HPyField obj;
23 } PointObject;

And the typedef of PointObject to PyPointObject:

29 // typedef PointObject PyPointObject;

Now any code that has not been ported should result in a compilation error.

We must also change the type helpers from HPyType_LEGACY_HELPERS to HPyType_HELPERS so that
PointObject_AsStruct knows that PyObject_HEAD has been removed:

35 HPyType_HELPERS(PointObject)

There is one more method to port, the dotmethod which is a module method that implements the dot product between
two points:

86 HPyDef_METH(dot, "dot", HPyFunc_VARARGS, .doc="Dot product.")
87 HPy dot_impl(HPyContext *ctx, HPy self, const HPy *args, size_t nargs)
88 {
89 HPy point1, point2;
90 if (!HPyArg_Parse(ctx, NULL, args, nargs, "OO", &point1, &point2))
91 return HPy_NULL;
92 PointObject *p1 = PointObject_AsStruct(ctx, point1);
93 PointObject *p2 = PointObject_AsStruct(ctx, point2);
94 double dp;
95 dp = p1->x * p2->x + p1->y * p2->y;
96 return HPyFloat_FromDouble(ctx, dp);
97 }

The changes are similar to those used in porting the norm method, except:

2.5. Porting Example 39

HPy, Release 0.9

• We use HPyArg_Parse instead of HPyArg_ParseKeywordsDict.

• We opted not to use an HPyTracker by passing NULL as the pointer to the tracker when calling
HPyArg_Parse. There is no reason not to use a tracker here, but the handles to the two points are passed
in as arguments to dot_impl and thus there is no need to close them (and they should not be closed).

We use PointObject_AsStruct and HPyFloat_FromDouble as before.

Now that we have ported everything we can remove PointMethods, Point_legacy_slots and
PointModuleLegacyMethods. The resulting type definition is much cleaner:

113 static HPyDef *point_defines[] = {
114 &Point_init,
115 &Point_norm,
116 &Point_obj,
117 &Point_traverse,
118 NULL
119 };
120

121 static HPyType_Spec Point_Type_spec = {
122 .name = "point_hpy_final.Point",
123 .doc = "Point (Step 03)",
124 .basicsize = sizeof(PointObject),
125 .itemsize = 0,
126 .flags = HPy_TPFLAGS_DEFAULT,
127 .defines = point_defines
128 };
129

130 HPyDef_SLOT(module_exec, HPy_mod_exec)
131 static int module_exec_impl(HPyContext *ctx, HPy mod)
132 {
133 HPy point_type = HPyType_FromSpec(ctx, &Point_Type_spec, NULL);
134 if (HPy_IsNull(point_type))
135 return -1;
136 HPy_SetAttr_s(ctx, mod, "Point", point_type);
137 return 0;
138 }

and the module definition is simpler too:

141 static HPyDef *module_defines[] = {
142 &module_exec,
143 &dot,
144 NULL
145 };
146

147 static HPyModuleDef moduledef = {
148 .doc = "Point module (Step 3; Porting complete)",
149 .size = 0,
150 .defines = module_defines,
151 };

Now that the port is complete, when we compile our extension in HPy universal mode, we obtain a built extension that
depends only on the HPy ABI and not on the CPython ABI at all!

40 Chapter 2. Full table of contents:

HPy, Release 0.9

2.6 Debug Mode

HPy includes a debug mode which does useful run-time checks to ensure that C extensions use the API correctly. Its
features include:

1. No special compilation flags are required: it is enough to compile the extension with the Universal ABI.

2. Debug mode can be activated at import time, and it can be activated per-extension.

3. You pay the overhead of debug mode only if you use it. Extensions loaded without the debug mode run at full
speed.

This is possible because the whole of the HPy API is provided as part of the HPy context, so debug mode can pass in
a special debugging context without affecting the performance of the regular context at all.

Note: The debug mode is only available if the module (you want to use it for) was built for HPy Universal ABI.

The debugging context can already check for:

• Leaked handles.

• Handles used after they are closed.

• Tuple and list builder used after they were closed (i.e. cancelled or the tuple/list was built).

• Reading from a memory which is no longer guaranteed to be still valid, for example, the buffer returned by
HPyUnicode_AsUTF8AndSize(), HPyBytes_AsString(), and HPyBytes_AS_STRING(), after
the corresponding HPy handle was closed.

• Writing to memory which should be read-only, for example the buffer returned by
HPyUnicode_AsUTF8AndSize(), HPyBytes_AsString(), and HPyBytes_AS_STRING()

2.6.1 Activating Debug Mode

Debug mode works only for extensions built with HPy universal ABI.

To enable debug mode, use environment variable HPY. If HPY=debug, then all HPy modules are loaded with the
trace context. Alternatively, it is also possible to specify the mode per module like this: HPY=modA:debug,
modB:debug.

In order to verify that your extension is being loaded in debug mode, use environment variable HPY_LOG. If this
variable is set, then all HPy extensions built in universal ABI mode print a message when loaded, such as:

> import snippets
Loading 'snippets' in HPy universal mode with a debug context

If the extension is built in CPython ABI mode, then the HPY_LOG environment variable has no effect.

An HPy extension module may be also explicitly loaded in debug mode using:

from hpy.universal import load, MODE_DEBUG
mod = load(module_name, so_filename, mode=MODE_DEBUG)

When loading HPy extensions explicitly, environment variables HPY_LOG and HPY have no effect for that extension.

2.6. Debug Mode 41

HPy, Release 0.9

2.6.2 Using Debug Mode

By default, when debug mode detects an error it will either abort the process (using HPy_FatalError()) or raise
a fatal exception. This may sound very strict but in general, it is not safe to continue the execution.

When testing, aborting the process is unwanted. Module hpy.debug exposes the LeakDetector class to detect
leaked HPy handles. For example:

def test_leak_detector():
from hpy.debug.pytest import LeakDetector
with LeakDetector() as ld:

add_ints is an HPy C function. If it forgets to close a handle,
LeakDetector will complain
assert mixed.add_ints(40, 2) == 42

Additionally, the debug module also provides a pytest fixture, hpy_debug, that for the time being, enables the
LeakDetector. In the future, it may also enable other useful debugging facilities.

from hpy.debug.pytest import hpy_debug
def test_that_uses_leak_detector_fixture(hpy_debug):

Run some HPy extension code

Warning: The usage of LeakDetector or hpy_debug by itself does not enable HPy debug mode! If debug
mode is not enabled for any extension, then those features have no effect.

When dealing with handle leaks, it is useful to get a stack trace of the allocation of the leaked handle. This feature has
large memory requirements and is therefore opt-in. It can be activated by:

hpy.debug.set_handle_stack_trace_limit(16)

and disabled by:

hpy.debug.disable_handle_stack_traces()

2.6.3 Example

Following HPy function leaks a handle:

HPyDef_METH(test_leak_stacktrace, "test_leak_stacktrace", HPyFunc_NOARGS)
static HPy test_leak_stacktrace_impl(HPyContext *ctx, HPy self)
{

HPy num = HPyLong_FromLong(ctx, 42);
if (HPy_IsNull(num)) {

return HPy_NULL;
}
// No HPy_Close(ctx, num);
return HPy_Dup(ctx, ctx->h_None);

}

When this script is executed in debug mode:

Run with HPY=debug
import hpy.debug
import snippets

(continues on next page)

42 Chapter 2. Full table of contents:

HPy, Release 0.9

(continued from previous page)

hpy.debug.set_handle_stack_trace_limit(16)
from hpy.debug.pytest import LeakDetector
with LeakDetector() as ld:

snippets.test_leak_stacktrace()

The output is:

Traceback (most recent call last):
File "/path/to/hpy/docs/examples/debug-example.py", line 7, in <module>
snippets.test_leak_stacktrace()

File "/path/to/hpy/debug/leakdetector.py", line 43, in __exit__
self.stop()

File "/path/to/hpy/debug/leakdetector.py", line 36, in stop
raise HPyLeakError(leaks)

hpy.debug.leakdetector.HPyLeakError: 1 unclosed handle:
<DebugHandle 0x556bbcf907c0 for 42>

Allocation stacktrace:
/path/to/site-packages/hpy-0.0.4.dev227+gd7eeec6.d20220510-py3.8-linux-x86_64.egg/hpy/
→˓universal.cpython-38d-x86_64-linux-gnu.so(debug_ctx_Long_FromLong+0x45)
→˓[0x7f1d928c48c4]
/path/to/site-packages/hpy_snippets-0.0.0-py3.8-linux-x86_64.egg/snippets.hpy.
→˓so(+0x122c) [0x7f1d921a622c]
/path/to/site-packages/hpy_snippets-0.0.0-py3.8-linux-x86_64.egg/snippets.hpy.
→˓so(+0x14b1) [0x7f1d921a64b1]
/path/to/site-packages/hpy-0.0.4.dev227+gd7eeec6.d20220510-py3.8-linux-x86_64.egg/hpy/
→˓universal.cpython-38d-x86_64-linux-gnu.so(debug_ctx_
→˓CallRealFunctionFromTrampoline+0xca) [0x7f1d928bde1e]
/path/to/site-packages/hpy_snippets-0.0.0-py3.8-linux-x86_64.egg/snippets.hpy.
→˓so(+0x129b) [0x7f1d921a629b]
/path/to/site-packages/hpy_snippets-0.0.0-py3.8-linux-x86_64.egg/snippets.hpy.
→˓so(+0x1472) [0x7f1d921a6472]
/path/to/libpython3.8d.so.1.0(+0x10a022) [0x7f1d93807022]
/path/to/libpython3.8d.so.1.0(+0x1e986b) [0x7f1d938e686b]
/path/to/libpython3.8d.so.1.0(+0x2015e9) [0x7f1d938fe5e9]
/path/to/libpython3.8d.so.1.0(_PyEval_EvalFrameDefault+0x1008c) [0x7f1d938f875a]
/path/to/libpython3.8d.so.1.0(PyEval_EvalFrameEx+0x64) [0x7f1d938e86b8]
/path/to/libpython3.8d.so.1.0(_PyEval_EvalCodeWithName+0xfaa) [0x7f1d938fc8af]
/path/to/libpython3.8d.so.1.0(PyEval_EvalCodeEx+0x86) [0x7f1d938fca25]
/path/to/libpython3.8d.so.1.0(PyEval_EvalCode+0x4b) [0x7f1d938e862b]

For the time being, HPy uses the glibc backtrace and backtrace_symbols functions. Therefore all their
caveats and limitations apply. Usual recommendations to get more symbols in the traces and not only addresses, such
as snippets.hpy.so(+0x122c), are:

• link your native code with -rdynamic flag (LDFLAGS="-rdynamic")

• build your code without optimizations and with debug symbols (CFLAGS="-O0 -g")

• use addr2line command line utility, e.g.: addr2line -e /path/to/snippets.hpy.so -C -f
+0x122c

2.6. Debug Mode 43

https://www.gnu.org/software/libc/manual/html_node/Backtraces.html

HPy, Release 0.9

2.7 Trace Mode

HPy’s trace mode allows you to analyze the usage of the HPy API. The two fundamental metrics are call count
and duration. As the name already suggests, call count tells you how often a certain HPy API function was
called and duration uses a monotonic clock to measure how much (accumulated) time was spent in a certain HPy
API function. It is further possible to register custom on-enter and on-exit Python functions.

As with the debug mode, the trace mode can be activated at import time, so no recompilation is required.

2.7.1 Activating Trace Mode

Similar to how the debug mode is activated, use environment variable HPY. If HPY=trace, then all HPy mod-
ules are loaded with the trace context. Alternatively, it is also possible to specify the mode per module like this:
HPY=modA:trace,modB:trace. Environment variable HPY_LOG also works.

2.7.2 Using Trace Mode

The trace mode can be accessed via the shipped module hpy.trace. It provides following functions:

• get_call_counts() returns a dict. The HPy API function names are used as keys and the corresponding
call count is the value.

• get_durations() also returns a dict similar to get_call_counts but the value is the accumulated time
spent in the corresponding HPy API function (in nanoseconds). Note, the used clock does not necessarily have
a nanosecond resolution which means that the least significant digits may not be accurate.

• set_trace_functions(on_enter=None, on_exit=None) allows the user to register custom trace
functions. The function provided for on_enter and on_exit functions will be executed before and after and
HPy API function is and was executed, respectively. Passing None to any of the two arguments or omitting one
will clear the corresponding function.

• get_frequency() returns the resolution of the used clock to measure the time in Hertz. For example, a
value of 10000000 corresponds to 10 MHz. In that case, the two least significant digits of the durations are
inaccurate.

2.7.3 Example

Following HPy function uses HPy_Add:

HPyDef_METH(add, "add", HPyFunc_VARARGS)
static HPy add_impl(HPyContext *ctx, HPy self, const HPy *args, size_t nargs)
{

if (nargs != 2) {
HPyErr_SetString(ctx, ctx->h_TypeError, "expected exactly two args");
return HPy_NULL;

}
return HPy_Add(ctx, args[0], args[1]);

}

When this script is executed in trace mode:

Run with HPY=trace
from hpy.trace import get_call_counts
import snippets

(continues on next page)

44 Chapter 2. Full table of contents:

HPy, Release 0.9

(continued from previous page)

add_count_0 = get_call_counts()["ctx_Add"]
snippets.add(1, 2) == 3
add_count_1 = get_call_counts()["ctx_Add"]

print('get_call_counts()["ctx_Add"] == %d' % (add_count_1 - add_count_0))

The output is get_call_counts()["ctx_Add"] == 1.

2.8 API Reference

HPy’s public API consists of three parts:

1. The Core API as defined in the Public API Header

2. HPy Helper functions

3. Inline Helper functions

2.8.1 Core API

The Core API consists of inline functions that call into the Python interpreter. Those functions will be implemented
by each Python interpreter. In CPython ABI mode, many of these inline functions will just delegate to a C API
functions. In HPy Universal ABI mode, they will call a function pointer from the HPy context. This is the source of
the performance change between the modes.

HPy Core API Function Index

• HPyBool_FromBool()

• HPyBytes_AS_STRING()

• HPyBytes_AsString()

• HPyBytes_Check()

• HPyBytes_FromString()

• HPyBytes_FromStringAndSize()

• HPyBytes_GET_SIZE()

• HPyBytes_Size()

• HPyCallable_Check()

• HPyCapsule_Get()

• HPyCapsule_IsValid()

• HPyCapsule_New()

• HPyCapsule_Set()

• HPyContextVar_Get()

• HPyContextVar_New()

• HPyContextVar_Set()

2.8. API Reference 45

HPy, Release 0.9

• HPyDict_Check()

• HPyDict_Copy()

• HPyDict_Keys()

• HPyDict_New()

• HPyErr_Clear()

• HPyErr_ExceptionMatches()

• HPyErr_NewException()

• HPyErr_NewExceptionWithDoc()

• HPyErr_NoMemory()

• HPyErr_Occurred()

• HPyErr_SetFromErrnoWithFilename()

• HPyErr_SetFromErrnoWithFilenameObjects()

• HPyErr_SetObject()

• HPyErr_SetString()

• HPyErr_WarnEx()

• HPyErr_WriteUnraisable()

• HPyField_Load()

• HPyField_Store()

• HPyFloat_AsDouble()

• HPyFloat_FromDouble()

• HPyGlobal_Load()

• HPyGlobal_Store()

• HPyImport_ImportModule()

• HPyListBuilder_Build()

• HPyListBuilder_Cancel()

• HPyListBuilder_New()

• HPyListBuilder_Set()

• HPyList_Append()

• HPyList_Check()

• HPyList_New()

• HPyLong_AsDouble()

• HPyLong_AsInt32_t()

• HPyLong_AsInt64_t()

• HPyLong_AsSize_t()

• HPyLong_AsSsize_t()

• HPyLong_AsUInt32_t()

46 Chapter 2. Full table of contents:

HPy, Release 0.9

• HPyLong_AsUInt32_tMask()

• HPyLong_AsUInt64_t()

• HPyLong_AsUInt64_tMask()

• HPyLong_AsVoidPtr()

• HPyLong_FromInt32_t()

• HPyLong_FromInt64_t()

• HPyLong_FromSize_t()

• HPyLong_FromSsize_t()

• HPyLong_FromUInt32_t()

• HPyLong_FromUInt64_t()

• HPyNumber_Check()

• HPySlice_Unpack()

• HPyTracker_Add()

• HPyTracker_Close()

• HPyTracker_ForgetAll()

• HPyTracker_New()

• HPyTupleBuilder_Build()

• HPyTupleBuilder_Cancel()

• HPyTupleBuilder_New()

• HPyTupleBuilder_Set()

• HPyTuple_Check()

• HPyTuple_FromArray()

• HPyType_FromSpec()

• HPyType_GenericNew()

• HPyType_GetName()

• HPyType_IsSubtype()

• HPyUnicode_AsASCIIString()

• HPyUnicode_AsLatin1String()

• HPyUnicode_AsUTF8AndSize()

• HPyUnicode_AsUTF8String()

• HPyUnicode_Check()

• HPyUnicode_DecodeASCII()

• HPyUnicode_DecodeFSDefault()

• HPyUnicode_DecodeFSDefaultAndSize()

• HPyUnicode_DecodeLatin1()

• HPyUnicode_EncodeFSDefault()

2.8. API Reference 47

HPy, Release 0.9

• HPyUnicode_FromEncodedObject()

• HPyUnicode_FromString()

• HPyUnicode_FromWideChar()

• HPyUnicode_ReadChar()

• HPyUnicode_Substring()

• HPy_ASCII()

• HPy_Absolute()

• HPy_Add()

• HPy_And()

• HPy_AsPyObject()

• HPy_Bytes()

• HPy_Call()

• HPy_CallMethod()

• HPy_CallTupleDict()

• HPy_Close()

• HPy_Compile_s()

• HPy_Contains()

• HPy_DelItem()

• HPy_DelItem_i()

• HPy_DelItem_s()

• HPy_Divmod()

• HPy_Dup()

• HPy_EvalCode()

• HPy_FatalError()

• HPy_Float()

• HPy_FloorDivide()

• HPy_FromPyObject()

• HPy_GetAttr()

• HPy_GetAttr_s()

• HPy_GetItem()

• HPy_GetItem_i()

• HPy_GetItem_s()

• HPy_HasAttr()

• HPy_HasAttr_s()

• HPy_Hash()

• HPy_InPlaceAdd()

48 Chapter 2. Full table of contents:

HPy, Release 0.9

• HPy_InPlaceAnd()

• HPy_InPlaceFloorDivide()

• HPy_InPlaceLshift()

• HPy_InPlaceMatrixMultiply()

• HPy_InPlaceMultiply()

• HPy_InPlaceOr()

• HPy_InPlacePower()

• HPy_InPlaceRemainder()

• HPy_InPlaceRshift()

• HPy_InPlaceSubtract()

• HPy_InPlaceTrueDivide()

• HPy_InPlaceXor()

• HPy_Index()

• HPy_Invert()

• HPy_Is()

• HPy_IsTrue()

• HPy_LeavePythonExecution()

• HPy_Length()

• HPy_Long()

• HPy_Lshift()

• HPy_MatrixMultiply()

• HPy_Multiply()

• HPy_Negative()

• HPy_Or()

• HPy_Positive()

• HPy_Power()

• HPy_ReenterPythonExecution()

• HPy_Remainder()

• HPy_Repr()

• HPy_RichCompare()

• HPy_RichCompareBool()

• HPy_Rshift()

• HPy_SetAttr()

• HPy_SetAttr_s()

• HPy_SetCallFunction()

• HPy_SetItem()

2.8. API Reference 49

HPy, Release 0.9

• HPy_SetItem_i()

• HPy_SetItem_s()

• HPy_Str()

• HPy_Subtract()

• HPy_TrueDivide()

• HPy_Type()

• HPy_TypeCheck()

• HPy_Xor()

HPy Context

The HPyContext structure is also part of the API since it provides handles for built-in objects. For a high-level
description of the context, please also read HPyContext.

struct _HPyContext_s

const char *name

int abi_version

HPy h_None

HPy h_True

HPy h_False

HPy h_NotImplemented

HPy h_Ellipsis

HPy h_BaseException

HPy h_Exception

HPy h_StopAsyncIteration

HPy h_StopIteration

HPy h_GeneratorExit

HPy h_ArithmeticError

HPy h_LookupError

HPy h_AssertionError

HPy h_AttributeError

HPy h_BufferError

HPy h_EOFError

HPy h_FloatingPointError

HPy h_OSError

HPy h_ImportError

HPy h_ModuleNotFoundError

HPy h_IndexError

50 Chapter 2. Full table of contents:

HPy, Release 0.9

HPy h_KeyError

HPy h_KeyboardInterrupt

HPy h_MemoryError

HPy h_NameError

HPy h_OverflowError

HPy h_RuntimeError

HPy h_RecursionError

HPy h_NotImplementedError

HPy h_SyntaxError

HPy h_IndentationError

HPy h_TabError

HPy h_ReferenceError

HPy h_SystemError

HPy h_SystemExit

HPy h_TypeError

HPy h_UnboundLocalError

HPy h_UnicodeError

HPy h_UnicodeEncodeError

HPy h_UnicodeDecodeError

HPy h_UnicodeTranslateError

HPy h_ValueError

HPy h_ZeroDivisionError

HPy h_BlockingIOError

HPy h_BrokenPipeError

HPy h_ChildProcessError

HPy h_ConnectionError

HPy h_ConnectionAbortedError

HPy h_ConnectionRefusedError

HPy h_ConnectionResetError

HPy h_FileExistsError

HPy h_FileNotFoundError

HPy h_InterruptedError

HPy h_IsADirectoryError

HPy h_NotADirectoryError

HPy h_PermissionError

HPy h_ProcessLookupError

2.8. API Reference 51

HPy, Release 0.9

HPy h_TimeoutError

HPy h_Warning

HPy h_UserWarning

HPy h_DeprecationWarning

HPy h_PendingDeprecationWarning

HPy h_SyntaxWarning

HPy h_RuntimeWarning

HPy h_FutureWarning

HPy h_ImportWarning

HPy h_UnicodeWarning

HPy h_BytesWarning

HPy h_ResourceWarning

HPy h_BaseObjectType

HPy h_TypeType

HPy h_BoolType

HPy h_LongType

HPy h_FloatType

HPy h_UnicodeType

HPy h_TupleType

HPy h_ListType

HPy h_ComplexType

HPy h_BytesType

HPy h_MemoryViewType

HPy h_CapsuleType

HPy h_SliceType

HPy h_Builtins

HPy Object

int HPy_IsTrue(HPyContext *ctx, HPy h)

HPy HPy_GetAttr(HPyContext *ctx, HPy obj, HPy name)

HPy HPy_GetAttr_s(HPyContext *ctx, HPy obj, const char *utf8_name)

int HPy_HasAttr(HPyContext *ctx, HPy obj, HPy name)

int HPy_HasAttr_s(HPyContext *ctx, HPy obj, const char *utf8_name)

int HPy_SetAttr(HPyContext *ctx, HPy obj, HPy name, HPy value)

int HPy_SetAttr_s(HPyContext *ctx, HPy obj, const char *utf8_name, HPy value)

HPy HPy_GetItem(HPyContext *ctx, HPy obj, HPy key)

52 Chapter 2. Full table of contents:

HPy, Release 0.9

HPy HPy_GetItem_s(HPyContext *ctx, HPy obj, const char *utf8_key)

HPy HPy_GetItem_i(HPyContext *ctx, HPy obj, HPy_ssize_t idx)

int HPy_SetItem(HPyContext *ctx, HPy obj, HPy key, HPy value)

int HPy_SetItem_s(HPyContext *ctx, HPy obj, const char *utf8_key, HPy value)

int HPy_SetItem_i(HPyContext *ctx, HPy obj, HPy_ssize_t idx, HPy value)

int HPy_DelItem(HPyContext *ctx, HPy obj, HPy key)

int HPy_DelItem_s(HPyContext *ctx, HPy obj, const char *utf8_key)

int HPy_DelItem_i(HPyContext *ctx, HPy obj, HPy_ssize_t idx)

HPy HPy_Type(HPyContext *ctx, HPy obj)
Returns the type of the given object obj.

On failure, raises SystemError and returns HPy_NULL. This is equivalent to the Python expres-
sion``type(obj)``.

Parameters

• ctx – The execution context.

• obj – a Python object (must not be HPy_NULL)

Returns The type of obj or HPy_NULL in case of errors.

int HPy_TypeCheck(HPyContext *ctx, HPy obj, HPy type)
Checks if ob is an instance of type or any subtype of type.

Parameters

• ctx – The execution context.

• obj – a Python object (must not be HPy_NULL)

• type – A Python type object. This argument must not be HPy_NULL and must be a type
(i.e. it must inherit from Python type). If this is not the case, the behavior is undefined
(verification of the argument is only done in debug mode).

Returns Non-zero if object obj is an instance of type type or an instance of a subtype of type,
and 0 otherwise.

int HPy_Is(HPyContext *ctx, HPy obj, HPy other)

HPy HPy_Repr(HPyContext *ctx, HPy obj)

HPy HPy_Str(HPyContext *ctx, HPy obj)

HPy HPy_ASCII(HPyContext *ctx, HPy obj)

HPy HPy_Bytes(HPyContext *ctx, HPy obj)

HPy HPy_RichCompare(HPyContext *ctx, HPy v, HPy w, int op)

int HPy_RichCompareBool(HPyContext *ctx, HPy v, HPy w, int op)

HPy_hash_t HPy_Hash(HPyContext *ctx, HPy obj)

int HPy_SetCallFunction(HPyContext *ctx, HPy h, HPyCallFunction *func)
Set the call function for the given object.

By defining slot HPy_tp_call for some type, instances of this type will be callable objects. The speci-
fied call function will be used by default for every instance. This should account for the most common case
(every instance of an object uses the same call function) but to still provide the necessary flexibility, function

2.8. API Reference 53

HPy, Release 0.9

HPy_SetCallFunction allows to set different (maybe specialized) call functions for each instance. This
must be done in the constructor of an object.

A more detailed description on how to use that function can be found in section Calling Protocol.

Parameters

• ctx – The execution context.

• h – A handle to an object implementing the call protocol, i.e., the object’s type must have
slot HPy_tp_call. Otherwise, a TypeError will be raised. This argument must not be
HPy_NULL.

• def – A pointer to the call function definition to set (must not be NULL). The definition is
usually created using HPyDef_CALL_FUNCTION

Returns 0 in case of success and -1 in case of an error.

HPy Types and Modules

Types, modules and their attributes (i.e. methods, members, slots, get-set descriptors) are defined in a similar way.
Section HPy Type documents the type-specific and HPy Module documents the module-specific part. Section HPy
Definition documents how to define attributes for both, types and modules.

HPy Type

Definition

struct HPyType_Spec

const char *name
The Python name of type (UTF-8 encoded)

int basicsize
The size in bytes of the types associated native structure. Usually, you define some C structure, e.g.,
typedef struct { int a; } MyObject;, and then this field is set to sizeof(MyObject).

int itemsize
The size of embedded elements (currently not supported).

unsigned long flags
Type flags (see HPy_TPFLAGS_DEFAULT, HPy_TPFLAGS_BASETYPE, HPy_TPFLAGS_HAVE_GC,
and others if available).

HPyType_BuiltinShape builtin_shape
The internal shape of the type. The shape gives the necessary hint to compute the offset to the data
pointer of the object’s underlying struct that should be returned when calling MyObject_AsStruct.
ATTENTION: It is also necessary to specify the right base class in the type’s specification parameters
(see HPyType_SpecParam). Assuming that the type’s C structure is called MyObject, this field
should be initialized with .builtin_shape = SHAPE(MyObject). Note: This requires that you
use HPyType_HELPERS or HPyType_LEGACY_HELPERS. Some more explanation: It would be pos-
sible to reduce this information to a Boolean that specifies if the type is a legacy type or not. Everything
else could be determined by looking at the base classes. However, with this information it is possible to do
the data pointer computation statically and thus is performance critical. Types that do not define a struct
of their own, should set the value of .builtin_shape to the same value as the type they inherit from.
If they inherit from a built-in type, they must set the corresponding .builtin_shape.

54 Chapter 2. Full table of contents:

HPy, Release 0.9

void *legacy_slots
Pointer to a NULL-terminated array of legacy (i.e. PyType_Slot) slots. A type with .legacy_slots
!= NULL is required to have HPyType_BuiltinShape_Legacy and to include PyObject_HEAD
at the start of its struct. It would be easy to relax this requirement on CPython (where the
PyObject_HEAD fields are always present) but a large burden on other implementations (e.g. PyPy,
GraalPy) where a struct starting with PyObject_HEAD might not exist.

int **defines
Pointer to a NULL-terminated array of pointers to HPy defines (i.e. HPyDef *).

const char *doc
Docstring of the type (UTF-8 encoded; may be NULL)

enum HPyType_BuiltinShape

enumerator HPyType_BuiltinShape_Legacy = -1
A type whose struct starts with PyObject_HEAD or equivalent is a legacy type. A legacy type must set .
builtin_shape = HPyType_BuiltinShape_Legacy in its HPyType_Spec. A type is a non-
legacy type, also called HPy pure type, if its struct does not include PyObject_HEAD. Using pure types
should be preferred. Legacy types are available to allow gradual porting of existing CPython extensions. A
type with .legacy_slots != NULL (see HPyType_Spec.legacy_slots) is required to have
HPyType_BuiltinShape_Legacy and to include PyObject_HEAD at the start of its struct. It
would be easy to relax this requirement on CPython (where the PyObject_HEAD fields are always
present) but a large burden on other implementations (e.g. PyPy, GraalPy) where a struct starting with
PyObject_HEAD might not exist. Types created via the old Python C API are automatically legacy
types.

enumerator HPyType_BuiltinShape_Object = 0
The type inherits from built-in type object (default).

enumerator HPyType_BuiltinShape_Type = 1
The type inherits from built-in type type. This can be used to create metaclasses. If using this shape, you
need to specify base class ctx->h_TypeType.

enumerator HPyType_BuiltinShape_Long = 2
The type inherits from built-in type int (aka. long object). If using this shape, you need to specify base
class ctx->h_LongType.

enumerator HPyType_BuiltinShape_Float = 3
The type inherits from built-in type float. If using this shape, you need to specify base class
ctx->h_FloatType.

enumerator HPyType_BuiltinShape_Unicode = 4
The type inherits from built-in type str (aka. unicode object). If using this shape, you need to specify
base class ctx->h_UnicodeType.

enumerator HPyType_BuiltinShape_Tuple = 5
The type inherits from built-in type tuple. If using this shape, you need to specify base class
ctx->h_TupleType.

enumerator HPyType_BuiltinShape_List = 6
The type inherits from built-in type list. If using this shape, you need to specify base class
ctx->h_ListType.

struct HPyType_SpecParam

HPyType_SpecParam_Kind kind
The kind of the type spec param.

2.8. API Reference 55

HPy, Release 0.9

int object
The value of the type spec param (an HPy handle).

enum HPyType_SpecParam_Kind

enumerator HPyType_SpecParam_Base = 1
Specify a base class. This parameter may be repeated but cannot be used together with
HPyType_SpecParam_Kind.HPyType_SpecParam_BasesTuple.

enumerator HPyType_SpecParam_BasesTuple = 2
Specify a tuple of base classes. Cannot be used together with HPyType_SpecParam_Kind.
HPyType_SpecParam_Base

enumerator HPyType_SpecParam_Metaclass = 3
Specify a meta class for the type.

HPyType_HELPERS()
A macro for creating (static inline) helper functions for custom types.

Two versions of the helper exist. One for legacy types and one for pure HPy types.

Example for a pure HPy custom type:

HPyType_HELPERS(PointObject)

It is also possible to inherit from some built-in types. The list of available built-in base types is given in enum
HPyTupe_BuiltinShape. In case you want to inherit from one of those, it is necessary to specify the base built-
in type in the HPyType_HELPERS macro. Here is an example for a pure HPy custom type inheriting from a
built-in type ‘tuple’:

HPyType_HELPERS(PointObject, HPyType_BuiltinShape_Tuple)

This would generate the following:

• PointObject * PointObject_AsStruct(HPyContext *ctx, HPy h): a static inline
function that uses HPy_AsStruct to return the PointObject struct associated with a given handle. The
behaviour is undefined if h is associated with an object that is not an instance of PointObject. However,
debug mode will catch an incorrect usage.

• SHAPE(PointObject): a macro that is meant to be used as static initializer in the corresponding
HPyType_Spec. It is recommended to write .builtin_shape = SHAPE(PointObject) such that
you don’t have to remember to update the spec when the helpers used changes.

Example for a legacy custom type:

HPyType_LEGACY_HELPERS(PointObject)

This would generate the same functions and constants as above, except:

• _HPy_AsStruct_Legacy is used instead of _HPy_AsStruct_Object.

• SHAPE(PointObject) would be HPyType_BuiltinShape_Legacy.

Parameters

• STRUCT – The C structure of the HPy type.

• SHAPE – Optional. The built-in shape of the type. This defaults to
HPyType_BuiltinShape_Object. Possible values are all enumerators of
HPyType_BuiltinShape.

56 Chapter 2. Full table of contents:

HPy, Release 0.9

HPyType_LEGACY_HELPERS(TYPE)
Convenience macro which is equivalent to: HPyType_HELPERS(TYPE,
HPyType_BuiltinShape_Legacy)

HPy_TPFLAGS_DEFAULT
Default type flags for HPy types.

HPy_TPFLAGS_BASETYPE
Set if the type allows subclassing

HPy_TPFLAGS_HAVE_GC
If set, the object will be tracked by CPython’s GC. Probably irrelevant for GC-based alternative implementations.

Construction and More

HPy HPyType_FromSpec(HPyContext *ctx, HPyType_Spec *spec, HPyType_SpecParam *params)
Create a type from a HPyType_Spec and an additional list of specification parameters.

Parameters

• ctx – The execution context.

• spec – The type spec to use to create the type.

• params – A 0-terminated list of type specification parameters or NULL.

Returns a handle of the created type on success, HPy_NULL on failure.

const char *HPyType_GetName(HPyContext *ctx, HPy type)
Return the type’s name.

Equivalent to getting the type’s __name__ attribute. If you want to retrieve the type’s name as a handle that
refers to a str, then just use HPy_GetAttr_s(ctx, type, "__name__").

Parameters

• ctx – The execution context.

• type – A Python type object. This argument must not be HPy_NULL and must be a type
(i.e. it must inherit from Python type). If this is not the case, the behavior is undefined
(verification of the argument is only done in debug mode).

Returns The name of the type as C string (UTF-8 encoded) or NULL in case of an error. The returned
pointer is read-only and guaranteed to be valid as long as the handle type is valid.

int HPyType_IsSubtype(HPyContext *ctx, HPy sub, HPy type)
Checks if sub is a subtype of type.

This function only checks for actual subtypes, which means that __subclasscheck__() is not called on
type.

Parameters

• ctx – The execution context.

• sub – A Python type object. This argument must not be HPy_NULL and must be a type
(i.e. it must inherit from Python type). If this is not the case, the behavior is undefined
(verification of the argument is only done in debug mode).

• type – A Python type object. This argument must not be HPy_NULL and must be a type
(i.e. it must inherit from Python type). If this is not the case, the behavior is undefined
(verification of the argument is only done in debug mode).

2.8. API Reference 57

HPy, Release 0.9

Returns Non-zero if sub is a subtype of type.

HPy Module

HPY_EMBEDDED_MODULES
If HPY_EMBEDDED_MODULES is defined, this means that there will be several embedded HPy modules (and
so, several HPy_MODINIT usages) in the same binary. In this case, some restrictions apply:

1. all of the module’s methods/member/slots/. . . must be defined in the same file

2. the embedder MUST declare the module to be embeddable by using macro HPY_MOD_EMBEDDABLE.

HPY_MOD_EMBEDDABLE(modname)
Declares a module to be embeddable which means that it and its members can be compiled/linked into a binary
together with other embeddable HPy modules.

You may declare a module to be embeddable if all of its member definitions are in the same file.

struct HPyModuleDef
Definition of a Python module. Pointer to this struct is returned from the HPy initialization function
HPyInit_{extname} and the Python interpreter creates a Python module from it. HPy supports only the
multi-phase module initialization approach (PEP 451).

There is no HPy API to create a Python module manually, i.e., equivalent of PyModule_Create or
PyModule_FromDefAndSpec, for the time being, but may be added if a use-case arises.

Note: unlike Python/C API, HPy module definition does not specify module name. The name if always taken
from the ModuleSpec, which is also the case in multi-phase module initialization on Python/C API.

const char *doc
Docstring of the type (UTF-8 encoded; may be NULL)

int size
The size (in bytes) of the module state structure. If set to zero, then the module will not get allocated
and assigned any HPy module state. Negative size, unlike in Python/C API, does not have any specific
meaning and will produce a runtime error.

int *legacy_methods
NULL-terminated list of legacy module-level methods. In order to enable incremental migration from C
API to HPy, it is possible to still add legacy method definitions. Those methods have a C API signature
which means that they still receive PyObject * and similar arguments. If legacy methods are defined,
you cannot create a universal binary (i.e. a binary that will run on all Python engines).

int **defines
Pointer to a NULL-terminated array of pointers to HPy defines (i.e. HPyDef *). Note, that some kinds of
HPy definitions don’t make sense for a module. In particular, anything else than methods.

int **globals
Pointer to a NULL-terminated array of pointers to HPyGlobal variables. For details, see HPyGlobal.

HPy_MODINIT(ext_name, mod_def)
Convenience macro for generating the module initialization code. This will generate three functions that are
used by to verify an initialize the module when loading:

get_required_hpy_major_version_<modname> The HPy major version this module was built with.

get_required_hpy_minor_version_<modname> The HPy minor version this module was built
with.

58 Chapter 2. Full table of contents:

HPy, Release 0.9

HPyModuleDef* HPyInit_<extname> The init function that will be called by the interpreter. This func-
tion does not have an access to HPyContext and thus cannot call any HPy APIs. The purpose of this func-
tion is to return a pointer to a HPyModuleDef structure that will serve as a specification of the module that
should be created by the interpreter. HPy supports only multi-phase module initialization (PEP 451). Any
module initialization code can be added to the HPy_mod_exec slot of the module if needed.

Example:

HPy_MODINIT(myextension_shared_library_filename, my_hpy_module_def)

HPy Definition

Defining slots, methods, members, and get-set descriptors for types and modules is done with HPy definition (repre-
sented by C struct HPyDef).

struct HPyDef
Generic structure of an HPy definition.

This struct can be used to define a slot, method, member, or get/set descriptor. For details, see embedded
structures HPySlot, HPyMeth, HPyMember, or HPyGetSet.

HPyDef_Kind kind
The kind of this definition. The value of this field determines which one of the embedded members slot,
meth, member, or getset is used. Since those are combined in a union, only one can be used at a time.

enum HPyDef_Kind
Enum to identify an HPy definition’s kind.

enumerator HPyDef_Kind_Slot

enumerator HPyDef_Kind_Meth

enumerator HPyDef_Kind_Member

enumerator HPyDef_Kind_GetSet

struct HPySlot
C structure to define an HPy slot.

It is perfectly fine to fill this structure manually. However, the recommended and easier way is to use macro
HPyDef_SLOT.

int slot
The slot to fill.

HPyCFunction impl
Function pointer to the slot’s implementation

int cpy_trampoline
Function pointer to the CPython trampoline function which is used by CPython to call the actual HPy
function impl.

struct HPyMeth
C structure to define an HPy method.

It is perfectly fine to fill this structure manually. However, the recommended and easier way is to use macro
HPyDef_METH .

const char *name
The name of Python attribute (UTF-8 encoded)

2.8. API Reference 59

HPy, Release 0.9

HPyCFunction impl
Function pointer of the C function implementation

int cpy_trampoline
Function pointer to the CPython trampoline function which is used by CPython to call the actual HPy
function impl.

int signature
Indicates the C function’s expected signature

const char *doc
Docstring of the method (UTF-8 encoded; may be NULL)

enum HPyMember_FieldType
Describes the type (and therefore also the size) of an HPy member.

enumerator HPyMember_SHORT

enumerator HPyMember_INT

enumerator HPyMember_LONG

enumerator HPyMember_FLOAT

enumerator HPyMember_DOUBLE

enumerator HPyMember_STRING

enumerator HPyMember_OBJECT

enumerator HPyMember_CHAR

enumerator HPyMember_BYTE

enumerator HPyMember_UBYTE

enumerator HPyMember_USHORT

enumerator HPyMember_UINT

enumerator HPyMember_ULONG

enumerator HPyMember_STRING_INPLACE

enumerator HPyMember_BOOL

enumerator HPyMember_OBJECT_EX

enumerator HPyMember_LONGLONG

enumerator HPyMember_ULONGLONG

enumerator HPyMember_HPYSSIZET

enumerator HPyMember_NONE

struct HPyMember
C structure to define an HPy member.

It is perfectly fine to fill this structure manually. However, the recommended and easier way is to use macro
HPyDef_MEMBER.

const char *name
The name of Python attribute (UTF-8 encoded)

HPyMember_FieldType type
The type of the HPy member (see enum HPyMember_FieldType).

60 Chapter 2. Full table of contents:

HPy, Release 0.9

int offset
The location (byte offset) of the member. Usually computed with offsetof(type, field).

int readonly
Flag indicating if the member is read-only

const char *doc
Docstring of the member (UTF-8 encoded; may be NULL)

struct HPyGetSet
C structure to define an HPy get/set descriptor.

It is perfectly fine to fill this structure manually. However, the recommended and easier way is to use
macros HPyDef_GET (to create a get descriptor only), HPyDef_SET (to create a set descriptor only), or
HPyDef_GETSET (to create both).

const char *name
The name of Python attribute (UTF-8 encoded)

HPyCFunction getter_impl
Function pointer of the C getter function (may be NULL)

HPyCFunction setter_impl
Function pointer of the C setter function (may be NULL)

int getter_cpy_trampoline
Function pointer to the CPython trampoline function for the getter (may be NULL if (and only if)
getter_impl == NULL)

int setter_cpy_trampoline
Function pointer to the CPython trampoline function for the setter (may be NULL if (and only if)
setter_impl == NULL)

const char *doc
Docstring of the get/set descriptor (UTF-8 encoded; may be NULL)

void *closure
A value that will be passed to the getter_impl/setter_impl functions.

HPyDef_SLOT(SYM, SLOT)
A convenience macro and recommended way to create a definition for an HPy slot.

The macro generates a C global variable and an appropriate CPython trampoline function. It will fill an HPyDef
structure appropriately and store it in the global variable.

This macro expects a C function SYM_impl that will be used as the implementing slot function.

Parameters

• SYM – A C symbol name of the resulting global variable that will contain the generated HPy
definition. The variable is defined as static.

• SLOT – The HPy slot identifier.

HPyDef_METH(SYM, NAME, SIG)
A convenience macro and recommended way to create a definition for an HPy method.

The macro generates a C global variable and an appropriate CPython trampoline function. It will fill an HPyDef
structure appropriately and store it in the global variable.

This macro expects a C function SYM_impl that will be used as the implementing C function.

Parameters

2.8. API Reference 61

HPy, Release 0.9

• SYM – A C symbol name of the resulting global variable that will contain the generated HPy
definition. The variable is defined as static.

• NAME – The Python attribute name (UTF-8 encoded).

• SIG – The implementation’s C signature (see HPyFunc_Signature).

HPyDef_MEMBER(SYM, NAME, TYPE, OFFSET)
A convenience macro and recommended way to create a definition for an HPy member.

The macro generates a C global variable. It will fill an HPyDef structure appropriately and store it in the global
variable.

Parameters

• SYM – A C symbol name of the resulting global variable that will contain the generated HPy
definition. The variable is defined as static.

• NAME – The Python attribute name (UTF-8 encoded).

• TYPE – The implementation’s C signature (see HPyFunc_Signature).

• OFFSET – The Python attribute name (UTF-8 encoded).

• .readonly – Optional flag indicating if the member is read-only.

• .doc – Optional docstring (UTF-8 encoded).

HPyDef_GET(SYM, NAME)
A convenience macro and recommended way to create a definition for an HPy get descriptor.

The macro generates a C global variable. It will fill an HPyDef structure appropriately and store it in the global
variable.

Parameters

• SYM – A C symbol name of the resulting global variable that will contain the generated HPy
definition. The variable is defined as static.

• NAME – The Python attribute name (UTF-8 encoded).

• .doc – Optional docstring (UTF-8 encoded).

• .closure – Optional pointer, providing additional data for the getter.

HPyDef_SET(SYM, NAME)
A convenience macro and recommended way to create a definition for an HPy set descriptor.

The macro generates a C global variable. It will fill an HPyDef structure appropriately and store it in the global
variable.

Parameters

• SYM – A C symbol name of the resulting global variable that will contain the generated HPy
definition. The variable is defined as static.

• NAME – The Python attribute name (UTF-8 encoded).

• .doc – Optional docstring (UTF-8 encoded).

• .closure – Optional pointer, providing additional data for the setter.

HPyDef_GETSET(SYM, NAME)
A convenience macro and recommended way to create a definition for an HPy get/set descriptor.

The macro generates a C global variable. It will fill an HPyDef structure appropriately and store it in the global
variable.

62 Chapter 2. Full table of contents:

HPy, Release 0.9

Parameters

• SYM – A C symbol name of the resulting global variable that will contain the generated HPy
definition. The variable is defined as static.

• NAME – The Python attribute name (UTF-8 encoded).

• .doc – Optional docstring (UTF-8 encoded).

• .closure – Optional pointer, providing additional data for the getter and setter.

HPyDef_CALL_FUNCTION(SYM)
A convenience macro and the recommended way to create a call function definition.

The macro generates a C global variable with name SYM. It will fill an HPyCallFunction structure appro-
priately and store it in the global variable.

This macro expects a C function SYM_impl that will be used as the implementing C function.

Parameters

• SYM – A C symbol name of the resulting global variable that will contain the generated call
function definition. The variable is defined as static.

HPy Call API

HPy HPy_Call(HPyContext *ctx, HPy callable, const HPy *args, size_t nargs, HPy kwnames)
Call a Python object.

Parameters

• ctx – The execution context.

• callable – A handle to the Python object to call (must not be HPy_NULL).

• args – A pointer to an array of positional and keyword arguments. This argument must not
be NULL if nargs > 0 or HPy_Length(ctx, kwnames) > 0.

• nargs – The number of positional arguments in args.

• kwnames – A handle to the tuple of keyword argument names (may be HPy_NULL). The
values of the keyword arguments are also passed in args appended to the positional argu-
ments. Argument nargs does not include the keyword argument count.

Returns The result of the call on success, or HPy_NULL in case of an error.

HPy HPy_CallMethod(HPyContext *ctx, HPy name, const HPy *args, size_t nargs, HPy kwnames)
Call a method of a Python object.

Parameters

• ctx – The execution context.

• name – A handle to the name (a Unicode object) of the method. Must not be HPy_NULL.

• args – A pointer to an array of the arguments. The receiver is args[0], and the positional
and keyword arguments are starting at args[1]. This argument must not be NULL since a
receiver is always required.

• nargs – The number of positional arguments in args including the receiver at args[0]
(therefore, nargs must be at least 1).

• kwnames – A handle to the tuple of keyword argument names (may be HPy_NULL). The
values of the keyword arguments are also passed in args appended to the positional argu-
ments. Argument nargs does not include the keyword argument count.

2.8. API Reference 63

HPy, Release 0.9

Returns The result of the call on success, or HPy_NULL in case of an error.

HPy HPy_CallTupleDict(HPyContext *ctx, HPy callable, HPy args, HPy kw)
Call a Python object.

Parameters

• ctx – The execution context.

• callable – A handle to the Python object to call (must not be HPy_NULL).

• args – A handle to a tuple containing the positional arguments (must not be HPy_NULL
but can, of course, be empty).

• kw – A handle to a Python dictionary containing the keyword arguments (may be
HPy_NULL).

Returns The result of the call on success, or HPy_NULL in case of an error.

HPyField

HPy HPyField_Load(HPyContext *ctx, HPy source_object, HPyField source_field)

void HPyField_Store(HPyContext *ctx, HPy target_object, HPyField *target_field, HPy h)
HPyFields should be used ONLY in parts of memory which is known to the GC, e.g. memory allocated by
HPy_New:

• NEVER declare a local variable of type HPyField

• NEVER use HPyField on a struct allocated by e.g. malloc()

CPython’s note: contrary to PyObject*, you don’t need to manually manage refcounting when using HPyField:
if you use HPyField_Store to overwrite an existing value, the old object will be automatically decrefed. This
means that you CANNOT use HPyField_Store to write memory which contains uninitialized values, because it
would try to decref a dangling pointer.

Note that HPy_New automatically zeroes the memory it allocates, so everything works well out of the box. In
case you are using manually allocated memory, you should initialize the HPyField to HPyField_NULL.

Note the difference:

• obj->f = HPyField_NULL: this should be used only to initialize uninitialized memory. If you use it
to overwrite a valid HPyField, you will cause a memory leak (at least on CPython)

• HPyField_Store(ctx, &obj->f, HPy_NULL): this does the right thing and decref the old value. However,
you CANNOT use it if the memory is not initialized.

Note: target_object and source_object are there in case an implementation needs to add write and/or read barriers
on the objects. They are ignored by CPython but e.g. PyPy needs a write barrier.

HPyGlobal

void HPyGlobal_Store(HPyContext *ctx, HPyGlobal *global, HPy h)
HPyGlobal is an alternative to module state. HPyGlobal must be a statically allocated C global variable reg-
istered in HPyModuleDef.globals array. A HPyGlobal can be used only after the HPy module where it is
registered was created using HPyModule_Create.

HPyGlobal serves as an identifier of a Python object that should be globally available per one Python interpreter.
Python objects referenced by HPyGlobals are destroyed automatically on the interpreter exit (not necessarily the
process exit).

64 Chapter 2. Full table of contents:

HPy, Release 0.9

HPyGlobal instance does not allow anything else but loading and storing a HPy handle using a HPyContext.
Even if the HPyGlobal C variable may be shared between threads or different interpreter instances within one
process, the API to load and store a handle from HPyGlobal is thread-safe (but like any other HPy API must not
be called in HPy_LeavePythonExecution blocks).

Given that a handle to object X1 is stored to HPyGlobal using HPyContext of Python interpreter I1, then loading
a handle from the same HPyGlobal using HPyContext of Python interpreter I1 should give a handle to the same
object X1. Another Python interpreter I2 running within the same process and using the same HPyGlobal
variable will not be able to load X1 from it, it will have its own view on what is stored in the given HPyGlobal.

Python interpreters may use indirection to isolate different interpreter instances, but alternative techniques such
as copy-on-write or immortal objects can be used to avoid that indirection (even selectively on per object basis
using tagged pointers).

CPython HPy implementation may even provide configuration option that switches between a faster version
that directly stores PyObject* to HPyGlobal but does not support subinterpreters, or a version that supports
subinterpreters. For now, CPython HPy always stores PyObject* directly to HPyGlobal.

While the standard implementation does not fully enforce the documented contract, the HPy debug mode will
enforce it (not implemented yet).

Implementation notes: All Python interpreters running in one process must be compatible, because they will
share all HPyGlobal C level variables. The internal data stored in HPyGlobal are specific for each HPy imple-
mentation, each implementation is also responsible for handling thread-safety when initializing the internal data
in HPyModule_Create. Note that HPyModule_Create may be called concurrently depending on the semantics of
the Python implementation (GIL vs no GIL) and also depending on the whether there may be multiple instances
of given Python interpreter running within the same process. In the future, HPy ABI may include a contract
that internal data of each HPyGlobal must be initialized to its address using atomic write and HPy implemen-
tations will not be free to choose what to store in HPyGlobal, however, this will allow multiple different HPy
implementations within one process. This contract may also be activated only by some runtime option, letting
the HPy implementation use more optimized HPyGlobal implementation otherwise.

HPy HPyGlobal_Load(HPyContext *ctx, HPyGlobal global)

HPy Dict

int HPyDict_Check(HPyContext *ctx, HPy h)
Tests if an object is an instance of a Python dict.

Parameters

• ctx – The execution context.

• h – A handle to an arbitrary object (must not be HPy_NULL).

Returns Non-zero if object h is an instance of type dict or an instance of a subtype of dict, and
0 otherwise.

HPy HPyDict_New(HPyContext *ctx)
Creates a new empty Python dictionary.

Parameters

• ctx – The execution context.

Returns A handle to the new and empty Python dictionary or HPy_NULL in case of an error.

HPy HPyDict_Keys(HPyContext *ctx, HPy h)
Returns a list of all keys from the dictionary.

2.8. API Reference 65

HPy, Release 0.9

Note: This function will directly access the storage of the dict object and therefore ignores if method keys was
overwritten.

Parameters

• ctx – The execution context.

• h – A Python dict object. If this argument is HPy_NULL or not an instance of a Python dict,
a SystemError will be raised.

Returns A Python list object containing all keys of the given dictionary or HPy_NULL in case of an
error.

HPy HPyDict_Copy(HPyContext *ctx, HPy h)
Creates a copy of the provided Python dict object.

Parameters

• ctx – The execution context.

• h – A Python dict object. If this argument is HPy_NULL or not an instance of a Python dict,
a SystemError will be raised.

Returns Return a new dictionary that contains the same key-value pairs as h or HPy_NULL in case
of an error.

Leave/enter Python execution (GIL)

HPyThreadState HPy_LeavePythonExecution(HPyContext *ctx)

void HPy_ReenterPythonExecution(HPyContext *ctx, HPyThreadState state)
Leaving Python execution: for releasing GIL and other use-cases.

In most situations, users should prefer using convenience macros:
HPy_BEGIN_LEAVE_PYTHON(context)/HPy_END_LEAVE_PYTHON(context)

HPy extensions may leave Python execution when running Python independent code: long-running compu-
tations or blocking operations. When an extension has left the Python execution it must not call any HPy
API other than HPy_ReenterPythonExecution. It can access pointers returned by HPy API, e.g., HPyUni-
code_AsUTF8String, provided that they are valid at the point of calling HPy_LeavePythonExecution.

Python execution must be reentered on the same thread as where it was left. The leave/enter calls must not be
nested. Debug mode will, in the future, enforce these constraints.

Python implementations may use this knowledge however they wish. The most obvious use case is to release the
GIL, in which case the HPy_BEGIN_LEAVE_PYTHON/HPy_END_LEAVE_PYTHON becomes equivalent to
Py_BEGIN_ALLOW_THREADS/Py_END_ALLOW_THREADS.

Exception Handling

HPy HPyErr_SetFromErrnoWithFilename(HPyContext *ctx, HPy h_type, const char *file-
name_fsencoded)

Similar to HPyErr_SetFromErrnoWithFilenameObjects() but takes one filename (a C string) that
will be decoded using HPyUnicode_DecodeFSDefault().

Parameters

• ctx – The execution context.

• h_type – The exception type to raise.

• filename_fsencoded – a filename; may be NULL

66 Chapter 2. Full table of contents:

HPy, Release 0.9

Returns always returns HPy_NULL

HPy HPyErr_SetFromErrnoWithFilenameObjects(HPyContext *ctx, HPy h_type, HPy filename1,
HPy filename2)

A convenience function to raise an exception when a C library function has returned an error and set the C
variable errno. It constructs an instance of the provided exception type h_type by calling h_type(errno,
strerror(errno), filename1, 0, filename2). The exception instance is then raised.

Parameters

• ctx – The execution context.

• h_type – The exception type to raise.

• filename1 – A filename; may be HPy_NULL. In the case of h_type is the OSError
exception, this is used to define the filename attribute of the exception instance.

• filename2 – another filename argument; may be HPy_NULL

Returns always returns HPy_NULL

void HPy_FatalError(HPyContext *ctx, const char *message)

HPy HPyErr_SetString(HPyContext *ctx, HPy h_type, const char *utf8_message)

HPy HPyErr_SetObject(HPyContext *ctx, HPy h_type, HPy h_value)

int HPyErr_Occurred(HPyContext *ctx)

int HPyErr_ExceptionMatches(HPyContext *ctx, HPy exc)

HPy HPyErr_NoMemory(HPyContext *ctx)

void HPyErr_Clear(HPyContext *ctx)

HPy HPyErr_NewException(HPyContext *ctx, const char *utf8_name, HPy base, HPy dict)

HPy HPyErr_NewExceptionWithDoc(HPyContext *ctx, const char *utf8_name, const char
*utf8_doc, HPy base, HPy dict)

int HPyErr_WarnEx(HPyContext *ctx, HPy category, const char *utf8_message, HPy_ssize_t
stack_level)

void HPyErr_WriteUnraisable(HPyContext *ctx, HPy obj)

Building tuples and lists

HPyTupleBuilder HPyTupleBuilder_New(HPyContext *ctx, HPy_ssize_t size)
Create a new tuple builder for size elements. The builder is then able to take at most size elements. This
function does not raise any exception (even if running out of memory).

Parameters

• ctx – The execution context.

• size – The number of elements to hold.

void HPyTupleBuilder_Set(HPyContext *ctx, HPyTupleBuilder builder, HPy_ssize_t index, HPy
h_item)

Assign an element to a certain index of the builder. Valid indices are in range 0 <= index < size where
size is the value passed to HPyTupleBuilder_New(). This function does not raise * any exception.

Parameters

• ctx – The execution context.

• builder – A tuple builder handle.

2.8. API Reference 67

HPy, Release 0.9

• index – The index to assign the object to.

• h_item – An HPy handle of the object to store or HPy_NULL. Please note that HPy never
steals handles and so, h_item needs to be closed by the caller.

HPy HPyTupleBuilder_Build(HPyContext *ctx, HPyTupleBuilder builder)
Build a tuple from a tuple builder.

Parameters

• ctx – The execution context.

• builder – A tuple builder handle.

Returns An HPy handle to a tuple containing the values inserted with
HPyTupleBuilder_Set() or HPy_NULL in case an error occurred during building
or earlier when creating the builder or setting the items.

void HPyTupleBuilder_Cancel(HPyContext *ctx, HPyTupleBuilder builder)
Cancel building of a tuple and free any acquired resources. This function ignores if any error occurred previously
when using the tuple builder.

Parameters

• ctx – The execution context.

• builder – A tuple builder handle.

HPyListBuilder HPyListBuilder_New(HPyContext *ctx, HPy_ssize_t size)
Create a new list builder for size elements. The builder is then able to take at most size elements. This
function does not raise any exception (even if running out of memory).

Parameters

• ctx – The execution context.

• size – The number of elements to hold.

void HPyListBuilder_Set(HPyContext *ctx, HPyListBuilder builder, HPy_ssize_t index, HPy h_item)
Assign an element to a certain index of the builder. Valid indices are in range 0 <= index < size where
size is the value passed to HPyListBuilder_New(). This function does not raise any exception.

Parameters

• ctx – The execution context.

• builder – A list builder handle.

• index – The index to assign the object to.

• h_item – An HPy handle of the object to store or HPy_NULL. Please note that HPy never
steals handles and so, h_item needs to be closed by the caller.

HPy HPyListBuilder_Build(HPyContext *ctx, HPyListBuilder builder)
Build a list from a list builder.

Parameters

• ctx – The execution context.

• builder – A list builder handle.

Returns An HPy handle to a list containing the values inserted with HPyListBuilder_Set()
or HPy_NULL in case an error occurred during building or earlier when creating the builder or
setting the items.

68 Chapter 2. Full table of contents:

HPy, Release 0.9

void HPyListBuilder_Cancel(HPyContext *ctx, HPyListBuilder builder)
Cancel building of a tuple and free any acquired resources. This function ignores if any error occurred previously
when using the tuple builder.

Parameters

• ctx – The execution context.

• builder – A tuple builder handle.

HPy Eval

enum HPy_SourceKind
An enumeration of the different kinds of source code strings.

enumerator HPy_SourceKind_Expr = 0
Parse isolated expressions (e.g. a + b).

enumerator HPy_SourceKind_File = 1
Parse sequences of statements as read from a file or other source. This is the symbol to use when compiling
arbitrarily long Python source code.

enumerator HPy_SourceKind_Single = 2
Parse a single statement. This is the mode used for the interactive interpreter loop.

HPy HPy_Compile_s(HPyContext *ctx, const char *utf8_source, const char *utf8_filename,
HPy_SourceKind kind)

Parse and compile the Python source code.

Parameters

• ctx – The execution context.

• utf8_source – Python source code given as UTF-8 encoded C string (must not be
NULL).

• utf8_filename – The filename (UTF-8 encoded C string) to use for construction of the
code object. It may appear in tracebacks or in SyntaxError exception messages.

• kind – The source kind which tells the parser if a single expression, statement, or a whole
file should be parsed (see enum HPy_SourceKind).

Returns A Python code object resulting from the parsed and compiled Python source code or
HPy_NULL in case of errors.

HPy HPy_EvalCode(HPyContext *ctx, HPy code, HPy globals, HPy locals)
Evaluate a precompiled code object.

Code objects can be compiled from a string using HPy_Compile_s().

Parameters

• ctx – The execution context.

• code – The code object to evaluate.

• globals – A Python dictionary defining the global variables for the evaluation.

• locals – A mapping object defining the local variables for the evaluation.

Returns The result produced by the executed code. May be HPy_NULL in case of errors.

2.8. API Reference 69

HPy, Release 0.9

Public API Header

The core API is defined in public_api.h:

1 /* HPy public API */
2

3 /*
4 * IMPORTANT: In order to ensure backwards compatibility of HPyContext, it is
5 * necessary to define the order of the context members. To do so, use macro
6 * 'HPy_ID(idx)' for context handles and functions. When adding members, it
7 * doesn't matter where they are located in this file. It's just important that
8 * the maximum context index is incremented by exactly one.
9 */

10

11 #ifdef AUTOGEN
12

13 /* Constants */
14 HPy_ID(0) HPy h_None;
15 HPy_ID(1) HPy h_True;
16 HPy_ID(2) HPy h_False;
17 HPy_ID(3) HPy h_NotImplemented;
18 HPy_ID(4) HPy h_Ellipsis;
19

20 /* Exceptions */
21 HPy_ID(5) HPy h_BaseException;
22 HPy_ID(6) HPy h_Exception;
23 HPy_ID(7) HPy h_StopAsyncIteration;
24 HPy_ID(8) HPy h_StopIteration;
25 HPy_ID(9) HPy h_GeneratorExit;
26 HPy_ID(10) HPy h_ArithmeticError;
27 HPy_ID(11) HPy h_LookupError;
28 HPy_ID(12) HPy h_AssertionError;
29 HPy_ID(13) HPy h_AttributeError;
30 HPy_ID(14) HPy h_BufferError;
31 HPy_ID(15) HPy h_EOFError;
32 HPy_ID(16) HPy h_FloatingPointError;
33 HPy_ID(17) HPy h_OSError;
34 HPy_ID(18) HPy h_ImportError;
35 HPy_ID(19) HPy h_ModuleNotFoundError;
36 HPy_ID(20) HPy h_IndexError;
37 HPy_ID(21) HPy h_KeyError;
38 HPy_ID(22) HPy h_KeyboardInterrupt;
39 HPy_ID(23) HPy h_MemoryError;
40 HPy_ID(24) HPy h_NameError;
41 HPy_ID(25) HPy h_OverflowError;
42 HPy_ID(26) HPy h_RuntimeError;
43 HPy_ID(27) HPy h_RecursionError;
44 HPy_ID(28) HPy h_NotImplementedError;
45 HPy_ID(29) HPy h_SyntaxError;
46 HPy_ID(30) HPy h_IndentationError;
47 HPy_ID(31) HPy h_TabError;
48 HPy_ID(32) HPy h_ReferenceError;
49 HPy_ID(33) HPy h_SystemError;
50 HPy_ID(34) HPy h_SystemExit;
51 HPy_ID(35) HPy h_TypeError;
52 HPy_ID(36) HPy h_UnboundLocalError;
53 HPy_ID(37) HPy h_UnicodeError;
54 HPy_ID(38) HPy h_UnicodeEncodeError;

(continues on next page)

70 Chapter 2. Full table of contents:

https://github.com/hpyproject/hpy/blob/master/hpy/tools/autogen/public_api.h

HPy, Release 0.9

(continued from previous page)

55 HPy_ID(39) HPy h_UnicodeDecodeError;
56 HPy_ID(40) HPy h_UnicodeTranslateError;
57 HPy_ID(41) HPy h_ValueError;
58 HPy_ID(42) HPy h_ZeroDivisionError;
59 HPy_ID(43) HPy h_BlockingIOError;
60 HPy_ID(44) HPy h_BrokenPipeError;
61 HPy_ID(45) HPy h_ChildProcessError;
62 HPy_ID(46) HPy h_ConnectionError;
63 HPy_ID(47) HPy h_ConnectionAbortedError;
64 HPy_ID(48) HPy h_ConnectionRefusedError;
65 HPy_ID(49) HPy h_ConnectionResetError;
66 HPy_ID(50) HPy h_FileExistsError;
67 HPy_ID(51) HPy h_FileNotFoundError;
68 HPy_ID(52) HPy h_InterruptedError;
69 HPy_ID(53) HPy h_IsADirectoryError;
70 HPy_ID(54) HPy h_NotADirectoryError;
71 HPy_ID(55) HPy h_PermissionError;
72 HPy_ID(56) HPy h_ProcessLookupError;
73 HPy_ID(57) HPy h_TimeoutError;
74 // EnvironmentError, IOError and WindowsError are intentionally omitted (they
75 // are all aliases of OSError since Python 3.3).
76

77 /* Warnings */
78 HPy_ID(58) HPy h_Warning;
79 HPy_ID(59) HPy h_UserWarning;
80 HPy_ID(60) HPy h_DeprecationWarning;
81 HPy_ID(61) HPy h_PendingDeprecationWarning;
82 HPy_ID(62) HPy h_SyntaxWarning;
83 HPy_ID(63) HPy h_RuntimeWarning;
84 HPy_ID(64) HPy h_FutureWarning;
85 HPy_ID(65) HPy h_ImportWarning;
86 HPy_ID(66) HPy h_UnicodeWarning;
87 HPy_ID(67) HPy h_BytesWarning;
88 HPy_ID(68) HPy h_ResourceWarning;
89

90 /* Types */
91 HPy_ID(69) HPy h_BaseObjectType; /* built-in 'object' */
92 HPy_ID(70) HPy h_TypeType; /* built-in 'type' */
93 HPy_ID(71) HPy h_BoolType; /* built-in 'bool' */
94 HPy_ID(72) HPy h_LongType; /* built-in 'int' */
95 HPy_ID(73) HPy h_FloatType; /* built-in 'float' */
96 HPy_ID(74) HPy h_UnicodeType; /* built-in 'str' */
97 HPy_ID(75) HPy h_TupleType; /* built-in 'tuple' */
98 HPy_ID(76) HPy h_ListType; /* built-in 'list' */
99 HPy_ID(238) HPy h_ComplexType; /* built-in 'complex' */

100 HPy_ID(239) HPy h_BytesType; /* built-in 'bytes' */
101 HPy_ID(240) HPy h_MemoryViewType; /* built-in 'memoryview' */
102 HPy_ID(241) HPy h_CapsuleType; /* built-in 'capsule' */
103 HPy_ID(242) HPy h_SliceType; /* built-in 'slice' */
104

105 /* Reflection */
106 HPy_ID(243) HPy h_Builtins; /* dict of builtins */
107

108 #endif
109

110 HPy_ID(77)
111 HPy HPy_Dup(HPyContext *ctx, HPy h);

(continues on next page)

2.8. API Reference 71

HPy, Release 0.9

(continued from previous page)

112 HPy_ID(78)
113 void HPy_Close(HPyContext *ctx, HPy h);
114

115 HPy_ID(79)
116 HPy HPyLong_FromInt32_t(HPyContext *ctx, int32_t value);
117 HPy_ID(80)
118 HPy HPyLong_FromUInt32_t(HPyContext *ctx, uint32_t value);
119 HPy_ID(81)
120 HPy HPyLong_FromInt64_t(HPyContext *ctx, int64_t v);
121 HPy_ID(82)
122 HPy HPyLong_FromUInt64_t(HPyContext *ctx, uint64_t v);
123 HPy_ID(83)
124 HPy HPyLong_FromSize_t(HPyContext *ctx, size_t value);
125 HPy_ID(84)
126 HPy HPyLong_FromSsize_t(HPyContext *ctx, HPy_ssize_t value);
127

128 HPy_ID(85)
129 int32_t HPyLong_AsInt32_t(HPyContext *ctx, HPy h);
130 HPy_ID(86)
131 uint32_t HPyLong_AsUInt32_t(HPyContext *ctx, HPy h);
132 HPy_ID(87)
133 uint32_t HPyLong_AsUInt32_tMask(HPyContext *ctx, HPy h);
134 HPy_ID(88)
135 int64_t HPyLong_AsInt64_t(HPyContext *ctx, HPy h);
136 HPy_ID(89)
137 uint64_t HPyLong_AsUInt64_t(HPyContext *ctx, HPy h);
138 HPy_ID(90)
139 uint64_t HPyLong_AsUInt64_tMask(HPyContext *ctx, HPy h);
140 HPy_ID(91)
141 size_t HPyLong_AsSize_t(HPyContext *ctx, HPy h);
142 HPy_ID(92)
143 HPy_ssize_t HPyLong_AsSsize_t(HPyContext *ctx, HPy h);
144 HPy_ID(93)
145 void* HPyLong_AsVoidPtr(HPyContext *ctx, HPy h);
146 HPy_ID(94)
147 double HPyLong_AsDouble(HPyContext *ctx, HPy h);
148

149 HPy_ID(95)
150 HPy HPyFloat_FromDouble(HPyContext *ctx, double v);
151 HPy_ID(96)
152 double HPyFloat_AsDouble(HPyContext *ctx, HPy h);
153

154 HPy_ID(97)
155 HPy HPyBool_FromBool(HPyContext *ctx, bool v);
156

157

158 /* abstract.h */
159 HPy_ID(98)
160 HPy_ssize_t HPy_Length(HPyContext *ctx, HPy h);
161

162 HPy_ID(99)
163 int HPyNumber_Check(HPyContext *ctx, HPy h);
164 HPy_ID(100)
165 HPy HPy_Add(HPyContext *ctx, HPy h1, HPy h2);
166 HPy_ID(101)
167 HPy HPy_Subtract(HPyContext *ctx, HPy h1, HPy h2);
168 HPy_ID(102)

(continues on next page)

72 Chapter 2. Full table of contents:

HPy, Release 0.9

(continued from previous page)

169 HPy HPy_Multiply(HPyContext *ctx, HPy h1, HPy h2);
170 HPy_ID(103)
171 HPy HPy_MatrixMultiply(HPyContext *ctx, HPy h1, HPy h2);
172 HPy_ID(104)
173 HPy HPy_FloorDivide(HPyContext *ctx, HPy h1, HPy h2);
174 HPy_ID(105)
175 HPy HPy_TrueDivide(HPyContext *ctx, HPy h1, HPy h2);
176 HPy_ID(106)
177 HPy HPy_Remainder(HPyContext *ctx, HPy h1, HPy h2);
178 HPy_ID(107)
179 HPy HPy_Divmod(HPyContext *ctx, HPy h1, HPy h2);
180 HPy_ID(108)
181 HPy HPy_Power(HPyContext *ctx, HPy h1, HPy h2, HPy h3);
182 HPy_ID(109)
183 HPy HPy_Negative(HPyContext *ctx, HPy h1);
184 HPy_ID(110)
185 HPy HPy_Positive(HPyContext *ctx, HPy h1);
186 HPy_ID(111)
187 HPy HPy_Absolute(HPyContext *ctx, HPy h1);
188 HPy_ID(112)
189 HPy HPy_Invert(HPyContext *ctx, HPy h1);
190 HPy_ID(113)
191 HPy HPy_Lshift(HPyContext *ctx, HPy h1, HPy h2);
192 HPy_ID(114)
193 HPy HPy_Rshift(HPyContext *ctx, HPy h1, HPy h2);
194 HPy_ID(115)
195 HPy HPy_And(HPyContext *ctx, HPy h1, HPy h2);
196 HPy_ID(116)
197 HPy HPy_Xor(HPyContext *ctx, HPy h1, HPy h2);
198 HPy_ID(117)
199 HPy HPy_Or(HPyContext *ctx, HPy h1, HPy h2);
200 HPy_ID(118)
201 HPy HPy_Index(HPyContext *ctx, HPy h1);
202 HPy_ID(119)
203 HPy HPy_Long(HPyContext *ctx, HPy h1);
204 HPy_ID(120)
205 HPy HPy_Float(HPyContext *ctx, HPy h1);
206

207 HPy_ID(121)
208 HPy HPy_InPlaceAdd(HPyContext *ctx, HPy h1, HPy h2);
209 HPy_ID(122)
210 HPy HPy_InPlaceSubtract(HPyContext *ctx, HPy h1, HPy h2);
211 HPy_ID(123)
212 HPy HPy_InPlaceMultiply(HPyContext *ctx, HPy h1, HPy h2);
213 HPy_ID(124)
214 HPy HPy_InPlaceMatrixMultiply(HPyContext *ctx, HPy h1, HPy h2);
215 HPy_ID(125)
216 HPy HPy_InPlaceFloorDivide(HPyContext *ctx, HPy h1, HPy h2);
217 HPy_ID(126)
218 HPy HPy_InPlaceTrueDivide(HPyContext *ctx, HPy h1, HPy h2);
219 HPy_ID(127)
220 HPy HPy_InPlaceRemainder(HPyContext *ctx, HPy h1, HPy h2);
221 HPy_ID(128)
222 HPy HPy_InPlacePower(HPyContext *ctx, HPy h1, HPy h2, HPy h3);
223 HPy_ID(129)
224 HPy HPy_InPlaceLshift(HPyContext *ctx, HPy h1, HPy h2);
225 HPy_ID(130)

(continues on next page)

2.8. API Reference 73

HPy, Release 0.9

(continued from previous page)

226 HPy HPy_InPlaceRshift(HPyContext *ctx, HPy h1, HPy h2);
227 HPy_ID(131)
228 HPy HPy_InPlaceAnd(HPyContext *ctx, HPy h1, HPy h2);
229 HPy_ID(132)
230 HPy HPy_InPlaceXor(HPyContext *ctx, HPy h1, HPy h2);
231 HPy_ID(133)
232 HPy HPy_InPlaceOr(HPyContext *ctx, HPy h1, HPy h2);
233

234 HPy_ID(134)
235 int HPyCallable_Check(HPyContext *ctx, HPy h);
236

237 /**
238 * Call a Python object.
239 *
240 * :param ctx:
241 * The execution context.
242 * :param callable:
243 * A handle to the Python object to call (must not be ``HPy_NULL``).
244 * :param args:
245 * A handle to a tuple containing the positional arguments (must not be
246 * ``HPy_NULL`` but can, of course, be empty).
247 * :param kw:
248 * A handle to a Python dictionary containing the keyword arguments (may be
249 * ``HPy_NULL``).
250 *
251 * :returns:
252 * The result of the call on success, or ``HPy_NULL`` in case of an error.
253 */
254 HPy_ID(135)
255 HPy HPy_CallTupleDict(HPyContext *ctx, HPy callable, HPy args, HPy kw);
256

257 /**
258 * Call a Python object.
259 *
260 * :param ctx:
261 * The execution context.
262 * :param callable:
263 * A handle to the Python object to call (must not be ``HPy_NULL``).
264 * :param args:
265 * A pointer to an array of positional and keyword arguments. This argument
266 * must not be ``NULL`` if ``nargs > 0`` or
267 * ``HPy_Length(ctx, kwnames) > 0``.
268 * :param nargs:
269 * The number of positional arguments in ``args``.
270 * :param kwnames:
271 * A handle to the tuple of keyword argument names (may be ``HPy_NULL``).
272 * The values of the keyword arguments are also passed in ``args`` appended
273 * to the positional arguments. Argument ``nargs`` does not include the
274 * keyword argument count.
275 *
276 * :returns:
277 * The result of the call on success, or ``HPy_NULL`` in case of an error.
278 */
279 HPy_ID(261)
280 HPy HPy_Call(HPyContext *ctx, HPy callable, const HPy *args, size_t nargs, HPy

→˓kwnames);
281

(continues on next page)

74 Chapter 2. Full table of contents:

HPy, Release 0.9

(continued from previous page)

282 /**
283 * Call a method of a Python object.
284 *
285 * :param ctx:
286 * The execution context.
287 * :param name:
288 * A handle to the name (a Unicode object) of the method. Must not be
289 * ``HPy_NULL``.
290 * :param args:
291 * A pointer to an array of the arguments. The receiver is ``args[0]``, and
292 * the positional and keyword arguments are starting at ``args[1]``. This
293 * argument must not be ``NULL`` since a receiver is always required.
294 * :param nargs:
295 * The number of positional arguments in ``args`` including the receiver at
296 * ``args[0]`` (therefore, ``nargs`` must be at least ``1``).
297 * :param kwnames:
298 * A handle to the tuple of keyword argument names (may be ``HPy_NULL``).
299 * The values of the keyword arguments are also passed in ``args`` appended
300 * to the positional arguments. Argument ``nargs`` does not include the
301 * keyword argument count.
302 *
303 * :returns:
304 * The result of the call on success, or ``HPy_NULL`` in case of an error.
305 */
306 HPy_ID(262)
307 HPy HPy_CallMethod(HPyContext *ctx, HPy name, const HPy *args, size_t nargs, HPy

→˓kwnames);
308

309 /* pyerrors.h */
310 HPy_ID(136)
311 void HPy_FatalError(HPyContext *ctx, const char *message);
312 HPy_ID(137)
313 HPy HPyErr_SetString(HPyContext *ctx, HPy h_type, const char *utf8_message);
314 HPy_ID(138)
315 HPy HPyErr_SetObject(HPyContext *ctx, HPy h_type, HPy h_value);
316

317 /**
318 * Similar to :c:func:`HPyErr_SetFromErrnoWithFilenameObjects` but takes one
319 * filename (a C string) that will be decoded using
320 * :c:func:`HPyUnicode_DecodeFSDefault`.
321 *
322 * :param ctx:
323 * The execution context.
324 * :param h_type:
325 * The exception type to raise.
326 * :param filename_fsencoded:
327 * a filename; may be ``NULL``
328 *
329 * :return:
330 * always returns ``HPy_NULL``
331 */
332 HPy_ID(139)
333 HPy HPyErr_SetFromErrnoWithFilename(HPyContext *ctx, HPy h_type, const char *filename_

→˓fsencoded);
334

335 /**
336 * A convenience function to raise an exception when a C library function has

(continues on next page)

2.8. API Reference 75

HPy, Release 0.9

(continued from previous page)

337 * returned an error and set the C variable ``errno``. It constructs an
338 * instance of the provided exception type ``h_type`` by calling
339 * ``h_type(errno, strerror(errno), filename1, 0, filename2)``. The exception
340 * instance is then raised.
341 *
342 * :param ctx:
343 * The execution context.
344 * :param h_type:
345 * The exception type to raise.
346 * :param filename1:
347 * A filename; may be ``HPy_NULL``. In the case of ``h_type`` is the
348 * ``OSError`` exception, this is used to define the filename attribute of
349 * the exception instance.
350 * :param filename2:
351 * another filename argument; may be ``HPy_NULL``
352 *
353 * :return:
354 * always returns ``HPy_NULL``
355 */
356 HPy_ID(140)
357 HPy HPyErr_SetFromErrnoWithFilenameObjects(HPyContext *ctx, HPy h_type, HPy filename1,

→˓ HPy filename2);
358 /* note: HPyErr_Occurred() returns a flag 0-or-1, instead of a 'PyObject *' */
359 HPy_ID(141)
360 int HPyErr_Occurred(HPyContext *ctx);
361 HPy_ID(142)
362 int HPyErr_ExceptionMatches(HPyContext *ctx, HPy exc);
363 HPy_ID(143)
364 HPy HPyErr_NoMemory(HPyContext *ctx);
365 HPy_ID(144)
366 void HPyErr_Clear(HPyContext *ctx);
367 HPy_ID(145)
368 HPy HPyErr_NewException(HPyContext *ctx, const char *utf8_name, HPy base, HPy dict);
369 HPy_ID(146)
370 HPy HPyErr_NewExceptionWithDoc(HPyContext *ctx, const char *utf8_name, const char

→˓*utf8_doc, HPy base, HPy dict);
371 HPy_ID(147)
372 int HPyErr_WarnEx(HPyContext *ctx, HPy category, const char *utf8_message, HPy_ssize_

→˓t stack_level);
373 HPy_ID(148)
374 void HPyErr_WriteUnraisable(HPyContext *ctx, HPy obj);
375

376 /* object.h */
377 HPy_ID(149)
378 int HPy_IsTrue(HPyContext *ctx, HPy h);
379

380 /**
381 * Create a type from a :c:struct:`HPyType_Spec` and an additional list of
382 * specification parameters.
383 *
384 * :param ctx:
385 * The execution context.
386 * :param spec:
387 * The type spec to use to create the type.
388 * :param params:
389 * A 0-terminated list of type specification parameters or ``NULL``.
390 *

(continues on next page)

76 Chapter 2. Full table of contents:

HPy, Release 0.9

(continued from previous page)

391 * :returns: a handle of the created type on success, ``HPy_NULL`` on failure.
392 */
393 HPy_ID(150)
394 HPy HPyType_FromSpec(HPyContext *ctx, HPyType_Spec *spec,
395 HPyType_SpecParam *params);
396 HPy_ID(151)
397 HPy HPyType_GenericNew(HPyContext *ctx, HPy type, const HPy *args, HPy_ssize_t nargs,

→˓HPy kw);
398

399 HPy_ID(152)
400 HPy HPy_GetAttr(HPyContext *ctx, HPy obj, HPy name);
401 HPy_ID(153)
402 HPy HPy_GetAttr_s(HPyContext *ctx, HPy obj, const char *utf8_name);
403

404 HPy_ID(154)
405 int HPy_HasAttr(HPyContext *ctx, HPy obj, HPy name);
406 HPy_ID(155)
407 int HPy_HasAttr_s(HPyContext *ctx, HPy obj, const char *utf8_name);
408

409 HPy_ID(156)
410 int HPy_SetAttr(HPyContext *ctx, HPy obj, HPy name, HPy value);
411 HPy_ID(157)
412 int HPy_SetAttr_s(HPyContext *ctx, HPy obj, const char *utf8_name, HPy value);
413

414 HPy_ID(158)
415 HPy HPy_GetItem(HPyContext *ctx, HPy obj, HPy key);
416 HPy_ID(159)
417 HPy HPy_GetItem_i(HPyContext *ctx, HPy obj, HPy_ssize_t idx);
418 HPy_ID(160)
419 HPy HPy_GetItem_s(HPyContext *ctx, HPy obj, const char *utf8_key);
420

421 HPy_ID(161)
422 int HPy_Contains(HPyContext *ctx, HPy container, HPy key);
423

424 HPy_ID(162)
425 int HPy_SetItem(HPyContext *ctx, HPy obj, HPy key, HPy value);
426 HPy_ID(163)
427 int HPy_SetItem_i(HPyContext *ctx, HPy obj, HPy_ssize_t idx, HPy value);
428 HPy_ID(164)
429 int HPy_SetItem_s(HPyContext *ctx, HPy obj, const char *utf8_key, HPy value);
430

431 HPy_ID(235)
432 int HPy_DelItem(HPyContext *ctx, HPy obj, HPy key);
433 HPy_ID(236)
434 int HPy_DelItem_i(HPyContext *ctx, HPy obj, HPy_ssize_t idx);
435 HPy_ID(237)
436 int HPy_DelItem_s(HPyContext *ctx, HPy obj, const char *utf8_key);
437

438 /**
439 * Returns the type of the given object ``obj``.
440 *
441 * On failure, raises ``SystemError`` and returns ``HPy_NULL``. This is
442 * equivalent to the Python expression``type(obj)``.
443 *
444 * :param ctx:
445 * The execution context.
446 * :param obj:

(continues on next page)

2.8. API Reference 77

HPy, Release 0.9

(continued from previous page)

447 * a Python object (must not be ``HPy_NULL``)
448 *
449 * :returns:
450 * The type of ``obj`` or ``HPy_NULL`` in case of errors.
451 */
452 HPy_ID(165)
453 HPy HPy_Type(HPyContext *ctx, HPy obj);
454

455 /**
456 * Checks if ``ob`` is an instance of ``type`` or any subtype of ``type``.
457 *
458 * :param ctx:
459 * The execution context.
460 * :param obj:
461 * a Python object (must not be ``HPy_NULL``)
462 * :param type:
463 * A Python type object. This argument must not be ``HPy_NULL`` and must be
464 * a type (i.e. it must inherit from Python ``type``). If this is not the
465 * case, the behavior is undefined (verification of the argument is only
466 * done in debug mode).
467 *
468 * :returns:
469 * Non-zero if object ``obj`` is an instance of type ``type`` or an instance
470 * of a subtype of ``type``, and ``0`` otherwise.
471 */
472 HPy_ID(166)
473 int HPy_TypeCheck(HPyContext *ctx, HPy obj, HPy type);
474

475 /**
476 * Return the type's name.
477 *
478 * Equivalent to getting the type's ``__name__`` attribute. If you want to
479 * retrieve the type's name as a handle that refers to a ``str``, then just use
480 * ``HPy_GetAttr_s(ctx, type, "__name__")``.
481 *
482 * :param ctx:
483 * The execution context.
484 * :param type:
485 * A Python type object. This argument must not be ``HPy_NULL`` and must be
486 * a type (i.e. it must inherit from Python ``type``). If this is not the
487 * case, the behavior is undefined (verification of the argument is only
488 * done in debug mode).
489 *
490 * :returns:
491 * The name of the type as C string (UTF-8 encoded) or ``NULL`` in case of
492 * an error. The returned pointer is read-only and guaranteed to be valid as
493 * long as the handle ``type`` is valid.
494 */
495 HPy_ID(253)
496 const char *HPyType_GetName(HPyContext *ctx, HPy type);
497

498 /**
499 * Checks if ``sub`` is a subtype of ``type``.
500 *
501 * This function only checks for actual subtypes, which means that
502 * ``__subclasscheck__()`` is not called on ``type``.
503 *

(continues on next page)

78 Chapter 2. Full table of contents:

HPy, Release 0.9

(continued from previous page)

504 * :param ctx:
505 * The execution context.
506 * :param sub:
507 * A Python type object. This argument must not be ``HPy_NULL`` and must be
508 * a type (i.e. it must inherit from Python ``type``). If this is not the
509 * case, the behavior is undefined (verification of the argument is only
510 * done in debug mode).
511 * :param type:
512 * A Python type object. This argument must not be ``HPy_NULL`` and must be
513 * a type (i.e. it must inherit from Python ``type``). If this is not the
514 * case, the behavior is undefined (verification of the argument is only
515 * done in debug mode).
516 *
517 * :returns:
518 * Non-zero if ``sub`` is a subtype of ``type``.
519 */
520 HPy_ID(254)
521 int HPyType_IsSubtype(HPyContext *ctx, HPy sub, HPy type);
522

523 HPy_ID(167)
524 int HPy_Is(HPyContext *ctx, HPy obj, HPy other);
525

526 HPy_ID(168)
527 void* _HPy_AsStruct_Object(HPyContext *ctx, HPy h);
528 HPy_ID(169)
529 void* _HPy_AsStruct_Legacy(HPyContext *ctx, HPy h);
530 HPy_ID(228)
531 void* _HPy_AsStruct_Type(HPyContext *ctx, HPy h);
532 HPy_ID(229)
533 void* _HPy_AsStruct_Long(HPyContext *ctx, HPy h);
534 HPy_ID(230)
535 void* _HPy_AsStruct_Float(HPyContext *ctx, HPy h);
536 HPy_ID(231)
537 void* _HPy_AsStruct_Unicode(HPyContext *ctx, HPy h);
538 HPy_ID(232)
539 void* _HPy_AsStruct_Tuple(HPyContext *ctx, HPy h);
540 HPy_ID(233)
541 void* _HPy_AsStruct_List(HPyContext *ctx, HPy h);
542 HPy_ID(234)
543 HPyType_BuiltinShape _HPyType_GetBuiltinShape(HPyContext *ctx, HPy h_type);
544

545 HPy_ID(170)
546 HPy _HPy_New(HPyContext *ctx, HPy h_type, void **data);
547

548 HPy_ID(171)
549 HPy HPy_Repr(HPyContext *ctx, HPy obj);
550 HPy_ID(172)
551 HPy HPy_Str(HPyContext *ctx, HPy obj);
552 HPy_ID(173)
553 HPy HPy_ASCII(HPyContext *ctx, HPy obj);
554 HPy_ID(174)
555 HPy HPy_Bytes(HPyContext *ctx, HPy obj);
556

557 HPy_ID(175)
558 HPy HPy_RichCompare(HPyContext *ctx, HPy v, HPy w, int op);
559 HPy_ID(176)
560 int HPy_RichCompareBool(HPyContext *ctx, HPy v, HPy w, int op);

(continues on next page)

2.8. API Reference 79

HPy, Release 0.9

(continued from previous page)

561

562 HPy_ID(177)
563 HPy_hash_t HPy_Hash(HPyContext *ctx, HPy obj);
564

565 /* bytesobject.h */
566 HPy_ID(178)
567 int HPyBytes_Check(HPyContext *ctx, HPy h);
568 HPy_ID(179)
569 HPy_ssize_t HPyBytes_Size(HPyContext *ctx, HPy h);
570 HPy_ID(180)
571 HPy_ssize_t HPyBytes_GET_SIZE(HPyContext *ctx, HPy h);
572 HPy_ID(181)
573 const char* HPyBytes_AsString(HPyContext *ctx, HPy h);
574 HPy_ID(182)
575 const char* HPyBytes_AS_STRING(HPyContext *ctx, HPy h);
576 HPy_ID(183)
577 HPy HPyBytes_FromString(HPyContext *ctx, const char *bytes);
578 HPy_ID(184)
579 HPy HPyBytes_FromStringAndSize(HPyContext *ctx, const char *bytes, HPy_ssize_t len);
580

581 /* unicodeobject.h */
582 HPy_ID(185)
583 HPy HPyUnicode_FromString(HPyContext *ctx, const char *utf8);
584 HPy_ID(186)
585 int HPyUnicode_Check(HPyContext *ctx, HPy h);
586 HPy_ID(187)
587 HPy HPyUnicode_AsASCIIString(HPyContext *ctx, HPy h);
588 HPy_ID(188)
589 HPy HPyUnicode_AsLatin1String(HPyContext *ctx, HPy h);
590 HPy_ID(189)
591 HPy HPyUnicode_AsUTF8String(HPyContext *ctx, HPy h);
592 HPy_ID(190)
593 const char* HPyUnicode_AsUTF8AndSize(HPyContext *ctx, HPy h, HPy_ssize_t *size);
594 HPy_ID(191)
595 HPy HPyUnicode_FromWideChar(HPyContext *ctx, const wchar_t *w, HPy_ssize_t size);
596 HPy_ID(192)
597 HPy HPyUnicode_DecodeFSDefault(HPyContext *ctx, const char *v);
598 HPy_ID(193)
599 HPy HPyUnicode_DecodeFSDefaultAndSize(HPyContext *ctx, const char *v, HPy_ssize_t

→˓size);
600 HPy_ID(194)
601 HPy HPyUnicode_EncodeFSDefault(HPyContext *ctx, HPy h);
602 HPy_ID(195)
603 HPy_UCS4 HPyUnicode_ReadChar(HPyContext *ctx, HPy h, HPy_ssize_t index);
604 HPy_ID(196)
605 HPy HPyUnicode_DecodeASCII(HPyContext *ctx, const char *ascii, HPy_ssize_t size,

→˓const char *errors);
606 HPy_ID(197)
607 HPy HPyUnicode_DecodeLatin1(HPyContext *ctx, const char *latin1, HPy_ssize_t size,

→˓const char *errors);
608

609 /**
610 * Decode a bytes-like object to a Unicode object.
611 *
612 * The bytes of the bytes-like object are decoded according to the given
613 * encoding and using the error handling defined by ``errors``.
614 *

(continues on next page)

80 Chapter 2. Full table of contents:

HPy, Release 0.9

(continued from previous page)

615 * :param ctx:
616 * The execution context.
617 * :param obj:
618 * A bytes-like object. This can be, for example, Python *bytes*,
619 * *bytearray*, *memoryview*, *array.array* and objects that support the
620 * Buffer protocol. If this argument is `HPy_NULL``, a ``SystemError`` will
621 * be raised. If the argument is not a bytes-like object, a ``TypeError``
622 * will be raised.
623 * :param encoding:
624 * The name (UTF-8 encoded C string) of the encoding to use. If the encoding
625 * does not exist, a ``LookupError`` will be raised. If this argument is
626 * ``NULL``, the default encoding ``UTF-8`` will be used.
627 * :param errors:
628 * The error handling (UTF-8 encoded C string) to use when decoding. The
629 * possible values depend on the used encoding. This argument may be
630 * ``NULL`` in which case it will default to ``"strict"``.
631 *
632 * :returns:
633 * A handle to a ``str`` object created from the decoded bytes or
634 * ``HPy_NULL`` in case of errors.
635 */
636 HPy_ID(255)
637 HPy HPyUnicode_FromEncodedObject(HPyContext *ctx, HPy obj, const char *encoding,

→˓const char *errors);
638

639 /**
640 * Return a substring of ``str``, from character index ``start`` (included) to
641 * character index ``end`` (excluded).
642 *
643 * Indices ``start`` and ``end`` must not be negative, otherwise an
644 * ``IndexError`` will be raised. If ``start >= len(str)`` or if
645 * ``end < start``, an empty string will be returned. If ``end > len(str)`` then
646 * ``end == len(str)`` will be assumed.
647 *
648 * :param ctx:
649 * The execution context.
650 * :param str:
651 * A Python Unicode object (must not be ``HPy_NULL``). Otherwise, the
652 * behavior is undefined (verification of the argument is only done in
653 * debug mode).
654 * :param start:
655 * The non-negative start index (inclusive).
656 * :param end:
657 * The non-negative end index (exclusive).
658 *
659 * :returns:
660 * The requested substring or ``HPy_NULL`` in case of an error.
661 */
662 HPy_ID(256)
663 HPy HPyUnicode_Substring(HPyContext *ctx, HPy str, HPy_ssize_t start, HPy_ssize_t

→˓end);
664

665 /* listobject.h */
666 HPy_ID(198)
667 int HPyList_Check(HPyContext *ctx, HPy h);
668 HPy_ID(199)
669 HPy HPyList_New(HPyContext *ctx, HPy_ssize_t len);

(continues on next page)

2.8. API Reference 81

HPy, Release 0.9

(continued from previous page)

670 HPy_ID(200)
671 int HPyList_Append(HPyContext *ctx, HPy h_list, HPy h_item);
672

673 /* dictobject.h */
674

675 /**
676 * Tests if an object is an instance of a Python dict.
677 *
678 * :param ctx:
679 * The execution context.
680 * :param h:
681 * A handle to an arbitrary object (must not be ``HPy_NULL``).
682 *
683 * :returns:
684 * Non-zero if object ``h`` is an instance of type ``dict`` or an instance
685 * of a subtype of ``dict``, and ``0`` otherwise.
686 */
687 HPy_ID(201)
688 int HPyDict_Check(HPyContext *ctx, HPy h);
689

690 /**
691 * Creates a new empty Python dictionary.
692 *
693 * :param ctx:
694 * The execution context.
695 *
696 * :returns:
697 * A handle to the new and empty Python dictionary or ``HPy_NULL`` in case
698 * of an error.
699 */
700 HPy_ID(202)
701 HPy HPyDict_New(HPyContext *ctx);
702

703 /**
704 * Returns a list of all keys from the dictionary.
705 *
706 * Note: This function will directly access the storage of the dict object and
707 * therefore ignores if method ``keys`` was overwritten.
708 *
709 * :param ctx:
710 * The execution context.
711 * :param h:
712 * A Python dict object. If this argument is ``HPy_NULL`` or not an
713 * instance of a Python dict, a ``SystemError`` will be raised.
714 *
715 * :returns:
716 * A Python list object containing all keys of the given dictionary or
717 * ``HPy_NULL`` in case of an error.
718 */
719 HPy_ID(257)
720 HPy HPyDict_Keys(HPyContext *ctx, HPy h);
721

722 /**
723 * Creates a copy of the provided Python dict object.
724 *
725 * :param ctx:
726 * The execution context.

(continues on next page)

82 Chapter 2. Full table of contents:

HPy, Release 0.9

(continued from previous page)

727 * :param h:
728 * A Python dict object. If this argument is ``HPy_NULL`` or not an
729 * instance of a Python dict, a ``SystemError`` will be raised.
730 *
731 * :returns:
732 * Return a new dictionary that contains the same key-value pairs as ``h``
733 * or ``HPy_NULL`` in case of an error.
734 */
735 HPy_ID(258)
736 HPy HPyDict_Copy(HPyContext *ctx, HPy h);
737

738 /* tupleobject.h */
739 HPy_ID(203)
740 int HPyTuple_Check(HPyContext *ctx, HPy h);
741 HPy_ID(204)
742 HPy HPyTuple_FromArray(HPyContext *ctx, HPy items[], HPy_ssize_t n);
743 // note: HPyTuple_Pack is implemented as a macro in common/macros.h
744

745 /* sliceobject.h */
746

747 /**
748 * Extract the start, stop and step data members from a slice object as C
749 * integers.
750 *
751 * The slice members may be arbitrary int-like objects. If they are not Python
752 * int objects, they will be coerced to int objects by calling their
753 * ``__index__`` method.
754 *
755 * If a slice member value is out of bounds, it will be set to the maximum value
756 * of ``HPy_ssize_t`` if the member was a positive number, or to the minimum
757 * value of ``HPy_ssize_t`` if it was a negative number.
758 *
759 * :param ctx:
760 * The execution context.
761 * :param slice:
762 * A handle to a Python slice object. This argument must be a slice object
763 * and must not be ``HPy_NULL``. Otherwise, behavior is undefined.
764 * :param start:
765 * A pointer to a variable where to write the unpacked slice start. Must not
766 * be ``NULL``.
767 * :param end:
768 * A pointer to a variable where to write the unpacked slice end. Must not
769 * :param step:
770 * A pointer to a variable where to write the unpacked slice step. Must not
771 * be ``NULL``.
772 *
773 * :returns:
774 * ``-1`` on error, ``0`` on success
775 */
776 HPy_ID(259)
777 int HPySlice_Unpack(HPyContext *ctx, HPy slice, HPy_ssize_t *start, HPy_ssize_t *stop,

→˓ HPy_ssize_t *step);
778

779 /* import.h */
780 HPy_ID(205)
781 HPy HPyImport_ImportModule(HPyContext *ctx, const char *utf8_name);
782

(continues on next page)

2.8. API Reference 83

HPy, Release 0.9

(continued from previous page)

783 /* pycapsule.h */
784 HPy_ID(244)
785 HPy HPyCapsule_New(HPyContext *ctx, void *pointer, const char *utf8_name, HPyCapsule_

→˓Destructor *destructor);
786 HPy_ID(245)
787 void* HPyCapsule_Get(HPyContext *ctx, HPy capsule, _HPyCapsule_key key, const char

→˓*utf8_name);
788 HPy_ID(246)
789 int HPyCapsule_IsValid(HPyContext *ctx, HPy capsule, const char *utf8_name);
790 HPy_ID(247)
791 int HPyCapsule_Set(HPyContext *ctx, HPy capsule, _HPyCapsule_key key, void *value);
792

793 /* integration with the old CPython API */
794 HPy_ID(206)
795 HPy HPy_FromPyObject(HPyContext *ctx, cpy_PyObject *obj);
796 HPy_ID(207)
797 cpy_PyObject *HPy_AsPyObject(HPyContext *ctx, HPy h);
798

799 /* internal helpers which need to be exposed to modules for practical reasons :(*/
800 HPy_ID(208)
801 void _HPy_CallRealFunctionFromTrampoline(HPyContext *ctx,
802 HPyFunc_Signature sig,
803 HPyCFunction func,
804 void *args);
805

806 /* Builders */
807

808 /**
809 * Create a new list builder for ``size`` elements. The builder is then able to
810 * take at most ``size`` elements. This function does not raise any
811 * exception (even if running out of memory).
812 *
813 * :param ctx:
814 * The execution context.
815 * :param size:
816 * The number of elements to hold.
817 */
818 HPy_ID(209)
819 HPyListBuilder HPyListBuilder_New(HPyContext *ctx, HPy_ssize_t size);
820

821 /**
822 * Assign an element to a certain index of the builder. Valid indices are in
823 * range ``0 <= index < size`` where ``size`` is the value passed to
824 * :c:func:`HPyListBuilder_New`. This function does not raise any exception.
825 *
826 * :param ctx:
827 * The execution context.
828 * :param builder:
829 * A list builder handle.
830 * :param index:
831 * The index to assign the object to.
832 * :param h_item:
833 * An HPy handle of the object to store or ``HPy_NULL``. Please note that
834 * HPy **never** steals handles and so, ``h_item`` needs to be closed by
835 * the caller.
836 */
837 HPy_ID(210)

(continues on next page)

84 Chapter 2. Full table of contents:

HPy, Release 0.9

(continued from previous page)

838 void HPyListBuilder_Set(HPyContext *ctx, HPyListBuilder builder,
839 HPy_ssize_t index, HPy h_item);
840

841 /**
842 * Build a list from a list builder.
843 *
844 * :param ctx:
845 * The execution context.
846 * :param builder:
847 * A list builder handle.
848 *
849 * :returns:
850 * An HPy handle to a list containing the values inserted with
851 * :c:func:`HPyListBuilder_Set` or ``HPy_NULL`` in case an error occurred
852 * during building or earlier when creating the builder or setting the
853 * items.
854 */
855 HPy_ID(211)
856 HPy HPyListBuilder_Build(HPyContext *ctx, HPyListBuilder builder);
857

858 /**
859 * Cancel building of a tuple and free any acquired resources.
860 * This function ignores if any error occurred previously when using the tuple
861 * builder.
862 *
863 * :param ctx:
864 * The execution context.
865 * :param builder:
866 * A tuple builder handle.
867 */
868 HPy_ID(212)
869 void HPyListBuilder_Cancel(HPyContext *ctx, HPyListBuilder builder);
870

871 /**
872 * Create a new tuple builder for ``size`` elements. The builder is then able
873 * to take at most ``size`` elements. This function does not raise any
874 * exception (even if running out of memory).
875 *
876 * :param ctx:
877 * The execution context.
878 * :param size:
879 * The number of elements to hold.
880 */
881 HPy_ID(213)
882 HPyTupleBuilder HPyTupleBuilder_New(HPyContext *ctx, HPy_ssize_t size);
883

884 /**
885 * Assign an element to a certain index of the builder. Valid indices are in
886 * range ``0 <= index < size`` where ``size`` is the value passed to
887 * :c:func:`HPyTupleBuilder_New`. This function does not raise * any exception.
888 *
889 * :param ctx:
890 * The execution context.
891 * :param builder:
892 * A tuple builder handle.
893 * :param index:
894 * The index to assign the object to.

(continues on next page)

2.8. API Reference 85

HPy, Release 0.9

(continued from previous page)

895 * :param h_item:
896 * An HPy handle of the object to store or ``HPy_NULL``. Please note that
897 * HPy **never** steals handles and so, ``h_item`` needs to be closed by
898 * the caller.
899 */
900 HPy_ID(214)
901 void HPyTupleBuilder_Set(HPyContext *ctx, HPyTupleBuilder builder,
902 HPy_ssize_t index, HPy h_item);
903

904 /**
905 * Build a tuple from a tuple builder.
906 *
907 * :param ctx:
908 * The execution context.
909 * :param builder:
910 * A tuple builder handle.
911 *
912 * :returns:
913 * An HPy handle to a tuple containing the values inserted with
914 * :c:func:`HPyTupleBuilder_Set` or ``HPy_NULL`` in case an error occurred
915 * during building or earlier when creating the builder or setting the
916 * items.
917 */
918 HPy_ID(215)
919 HPy HPyTupleBuilder_Build(HPyContext *ctx, HPyTupleBuilder builder);
920

921 /**
922 * Cancel building of a tuple and free any acquired resources.
923 * This function ignores if any error occurred previously when using the tuple
924 * builder.
925 *
926 * :param ctx:
927 * The execution context.
928 * :param builder:
929 * A tuple builder handle.
930 */
931 HPy_ID(216)
932 void HPyTupleBuilder_Cancel(HPyContext *ctx, HPyTupleBuilder builder);
933

934 /* Helper for correctly closing handles */
935

936 HPy_ID(217)
937 HPyTracker HPyTracker_New(HPyContext *ctx, HPy_ssize_t size);
938 HPy_ID(218)
939 int HPyTracker_Add(HPyContext *ctx, HPyTracker ht, HPy h);
940 HPy_ID(219)
941 void HPyTracker_ForgetAll(HPyContext *ctx, HPyTracker ht);
942 HPy_ID(220)
943 void HPyTracker_Close(HPyContext *ctx, HPyTracker ht);
944

945 /**
946 * HPyFields should be used ONLY in parts of memory which is known to the GC,
947 * e.g. memory allocated by HPy_New:
948 *
949 * - NEVER declare a local variable of type HPyField
950 * - NEVER use HPyField on a struct allocated by e.g. malloc()
951 *

(continues on next page)

86 Chapter 2. Full table of contents:

HPy, Release 0.9

(continued from previous page)

952 * **CPython's note**: contrary to PyObject*, you don't need to manually
953 * manage refcounting when using HPyField: if you use HPyField_Store to
954 * overwrite an existing value, the old object will be automatically decrefed.
955 * This means that you CANNOT use HPyField_Store to write memory which
956 * contains uninitialized values, because it would try to decref a dangling
957 * pointer.
958 *
959 * Note that HPy_New automatically zeroes the memory it allocates, so
960 * everything works well out of the box. In case you are using manually
961 * allocated memory, you should initialize the HPyField to HPyField_NULL.
962 *
963 * Note the difference:
964 *
965 * - ``obj->f = HPyField_NULL``: this should be used only to initialize
966 * uninitialized memory. If you use it to overwrite a valid HPyField, you
967 * will cause a memory leak (at least on CPython)
968 *
969 * - HPyField_Store(ctx, &obj->f, HPy_NULL): this does the right thing and
970 * decref the old value. However, you CANNOT use it if the memory is not
971 * initialized.
972 *
973 * Note: target_object and source_object are there in case an implementation
974 * needs to add write and/or read barriers on the objects. They are ignored by
975 * CPython but e.g. PyPy needs a write barrier.
976 */
977 HPy_ID(221)
978 void HPyField_Store(HPyContext *ctx, HPy target_object, HPyField *target_field, HPy

→˓h);
979 HPy_ID(222)
980 HPy HPyField_Load(HPyContext *ctx, HPy source_object, HPyField source_field);
981

982 /**
983 * Leaving Python execution: for releasing GIL and other use-cases.
984 *
985 * In most situations, users should prefer using convenience macros:
986 * HPy_BEGIN_LEAVE_PYTHON(context)/HPy_END_LEAVE_PYTHON(context)
987 *
988 * HPy extensions may leave Python execution when running Python independent
989 * code: long-running computations or blocking operations. When an extension
990 * has left the Python execution it must not call any HPy API other than
991 * HPy_ReenterPythonExecution. It can access pointers returned by HPy API,
992 * e.g., HPyUnicode_AsUTF8String, provided that they are valid at the point
993 * of calling HPy_LeavePythonExecution.
994 *
995 * Python execution must be reentered on the same thread as where it was left.
996 * The leave/enter calls must not be nested. Debug mode will, in the future,
997 * enforce these constraints.
998 *
999 * Python implementations may use this knowledge however they wish. The most

1000 * obvious use case is to release the GIL, in which case the
1001 * HPy_BEGIN_LEAVE_PYTHON/HPy_END_LEAVE_PYTHON becomes equivalent to
1002 * Py_BEGIN_ALLOW_THREADS/Py_END_ALLOW_THREADS.
1003 */
1004 HPy_ID(223)
1005 void HPy_ReenterPythonExecution(HPyContext *ctx, HPyThreadState state);
1006 HPy_ID(224)
1007 HPyThreadState HPy_LeavePythonExecution(HPyContext *ctx);

(continues on next page)

2.8. API Reference 87

HPy, Release 0.9

(continued from previous page)

1008

1009 /**
1010 * HPyGlobal is an alternative to module state. HPyGlobal must be a statically
1011 * allocated C global variable registered in HPyModuleDef.globals array.
1012 * A HPyGlobal can be used only after the HPy module where it is registered was
1013 * created using HPyModule_Create.
1014 *
1015 * HPyGlobal serves as an identifier of a Python object that should be globally
1016 * available per one Python interpreter. Python objects referenced by HPyGlobals
1017 * are destroyed automatically on the interpreter exit (not necessarily the
1018 * process exit).
1019 *
1020 * HPyGlobal instance does not allow anything else but loading and storing
1021 * a HPy handle using a HPyContext. Even if the HPyGlobal C variable may
1022 * be shared between threads or different interpreter instances within one
1023 * process, the API to load and store a handle from HPyGlobal is thread-safe (but
1024 * like any other HPy API must not be called in HPy_LeavePythonExecution blocks).
1025 *
1026 * Given that a handle to object X1 is stored to HPyGlobal using HPyContext of
1027 * Python interpreter I1, then loading a handle from the same HPyGlobal using
1028 * HPyContext of Python interpreter I1 should give a handle to the same object
1029 * X1. Another Python interpreter I2 running within the same process and using
1030 * the same HPyGlobal variable will not be able to load X1 from it, it will have
1031 * its own view on what is stored in the given HPyGlobal.
1032 *
1033 * Python interpreters may use indirection to isolate different interpreter
1034 * instances, but alternative techniques such as copy-on-write or immortal
1035 * objects can be used to avoid that indirection (even selectively on per
1036 * object basis using tagged pointers).
1037 *
1038 * CPython HPy implementation may even provide configuration option that
1039 * switches between a faster version that directly stores PyObject* to
1040 * HPyGlobal but does not support subinterpreters, or a version that supports
1041 * subinterpreters. For now, CPython HPy always stores PyObject* directly
1042 * to HPyGlobal.
1043 *
1044 * While the standard implementation does not fully enforce the documented
1045 * contract, the HPy debug mode will enforce it (not implemented yet).
1046 *
1047 * **Implementation notes:**
1048 * All Python interpreters running in one process must be compatible, because
1049 * they will share all HPyGlobal C level variables. The internal data stored
1050 * in HPyGlobal are specific for each HPy implementation, each implementation
1051 * is also responsible for handling thread-safety when initializing the
1052 * internal data in HPyModule_Create. Note that HPyModule_Create may be called
1053 * concurrently depending on the semantics of the Python implementation (GIL vs
1054 * no GIL) and also depending on the whether there may be multiple instances of
1055 * given Python interpreter running within the same process. In the future, HPy
1056 * ABI may include a contract that internal data of each HPyGlobal must be
1057 * initialized to its address using atomic write and HPy implementations will
1058 * not be free to choose what to store in HPyGlobal, however, this will allow
1059 * multiple different HPy implementations within one process. This contract may
1060 * also be activated only by some runtime option, letting the HPy implementation
1061 * use more optimized HPyGlobal implementation otherwise.
1062 */
1063 HPy_ID(225)
1064 void HPyGlobal_Store(HPyContext *ctx, HPyGlobal *global, HPy h);

(continues on next page)

88 Chapter 2. Full table of contents:

HPy, Release 0.9

(continued from previous page)

1065 HPy_ID(226)
1066 HPy HPyGlobal_Load(HPyContext *ctx, HPyGlobal global);
1067

1068 /* Debugging helpers */
1069 HPy_ID(227)
1070 void _HPy_Dump(HPyContext *ctx, HPy h);
1071

1072 /* Evaluating Python statements/expressions */
1073

1074 /**
1075 * Parse and compile the Python source code.
1076 *
1077 * :param ctx:
1078 * The execution context.
1079 * :param utf8_source:
1080 * Python source code given as UTF-8 encoded C string (must not be ``NULL``).
1081 * :param utf8_filename:
1082 * The filename (UTF-8 encoded C string) to use for construction of the code
1083 * object. It may appear in tracebacks or in ``SyntaxError`` exception
1084 * messages.
1085 * :param kind:
1086 * The source kind which tells the parser if a single expression, statement,
1087 * or a whole file should be parsed (see enum :c:enum:`HPy_SourceKind`).
1088 *
1089 * :returns:
1090 * A Python code object resulting from the parsed and compiled Python source
1091 * code or ``HPy_NULL`` in case of errors.
1092 */
1093 HPy_ID(248)
1094 HPy HPy_Compile_s(HPyContext *ctx, const char *utf8_source, const char *utf8_filename,

→˓ HPy_SourceKind kind);
1095

1096 /**
1097 * Evaluate a precompiled code object.
1098 *
1099 * Code objects can be compiled from a string using :c:func:`HPy_Compile_s`.
1100 *
1101 * :param ctx:
1102 * The execution context.
1103 * :param code:
1104 * The code object to evaluate.
1105 * :param globals:
1106 * A Python dictionary defining the global variables for the evaluation.
1107 * :param locals:
1108 * A mapping object defining the local variables for the evaluation.
1109 *
1110 * :returns:
1111 * The result produced by the executed code. May be ``HPy_NULL`` in case of
1112 * errors.
1113 */
1114 HPy_ID(249)
1115 HPy HPy_EvalCode(HPyContext *ctx, HPy code, HPy globals, HPy locals);
1116 HPy_ID(250)
1117 HPy HPyContextVar_New(HPyContext *ctx, const char *name, HPy default_value);
1118 HPy_ID(251)
1119 int32_t HPyContextVar_Get(HPyContext *ctx, HPy context_var, HPy default_value, HPy

→˓*result);
(continues on next page)

2.8. API Reference 89

HPy, Release 0.9

(continued from previous page)

1120 HPy_ID(252)
1121 HPy HPyContextVar_Set(HPyContext *ctx, HPy context_var, HPy value);
1122

1123 /**
1124 * Set the call function for the given object.
1125 *
1126 * By defining slot ``HPy_tp_call`` for some type, instances of this type will
1127 * be callable objects. The specified call function will be used by default for
1128 * every instance. This should account for the most common case (every instance
1129 * of an object uses the same call function) but to still provide the necessary
1130 * flexibility, function ``HPy_SetCallFunction`` allows to set different (maybe
1131 * specialized) call functions for each instance. This must be done in the
1132 * constructor of an object.
1133 *
1134 * A more detailed description on how to use that function can be found in
1135 * section :ref:`porting-guide:calling protocol`.
1136 *
1137 * :param ctx:
1138 * The execution context.
1139 * :param h:
1140 * A handle to an object implementing the call protocol, i.e., the object's
1141 * type must have slot ``HPy_tp_call``. Otherwise, a ``TypeError`` will be
1142 * raised. This argument must not be ``HPy_NULL``.
1143 * :param def:
1144 * A pointer to the call function definition to set (must not be
1145 * ``NULL``). The definition is usually created using
1146 * :c:macro:`HPyDef_CALL_FUNCTION`
1147 *
1148 * :returns:
1149 * ``0`` in case of success and ``-1`` in case of an error.
1150 */
1151 HPy_ID(260)
1152 int HPy_SetCallFunction(HPyContext *ctx, HPy h, HPyCallFunction *func);
1153

1154 /* *******
1155 hpyfunc
1156 *******
1157

1158 These typedefs are used to generate the various macros used by
1159 include/common/hpyfunc.h
1160 */
1161 typedef HPy (*HPyFunc_noargs)(HPyContext *ctx, HPy self);
1162 typedef HPy (*HPyFunc_o)(HPyContext *ctx, HPy self, HPy arg);
1163 typedef HPy (*HPyFunc_varargs)(HPyContext *ctx, HPy self, const HPy *args, size_t

→˓nargs);
1164 typedef HPy (*HPyFunc_keywords)(HPyContext *ctx, HPy self, const HPy *args,
1165 size_t nargs, HPy kwnames);
1166

1167 typedef HPy (*HPyFunc_unaryfunc)(HPyContext *ctx, HPy);
1168 typedef HPy (*HPyFunc_binaryfunc)(HPyContext *ctx, HPy, HPy);
1169 typedef HPy (*HPyFunc_ternaryfunc)(HPyContext *ctx, HPy, HPy, HPy);
1170 typedef int (*HPyFunc_inquiry)(HPyContext *ctx, HPy);
1171 typedef HPy_ssize_t (*HPyFunc_lenfunc)(HPyContext *ctx, HPy);
1172 typedef HPy (*HPyFunc_ssizeargfunc)(HPyContext *ctx, HPy, HPy_ssize_t);
1173 typedef HPy (*HPyFunc_ssizessizeargfunc)(HPyContext *ctx, HPy, HPy_ssize_t, HPy_ssize_

→˓t);
1174 typedef int (*HPyFunc_ssizeobjargproc)(HPyContext *ctx, HPy, HPy_ssize_t, HPy);

(continues on next page)

90 Chapter 2. Full table of contents:

HPy, Release 0.9

(continued from previous page)

1175 typedef int (*HPyFunc_ssizessizeobjargproc)(HPyContext *ctx, HPy, HPy_ssize_t, HPy_
→˓ssize_t, HPy);

1176 typedef int (*HPyFunc_objobjargproc)(HPyContext *ctx, HPy, HPy, HPy);
1177 typedef void (*HPyFunc_freefunc)(HPyContext *ctx, void *);
1178 typedef HPy (*HPyFunc_getattrfunc)(HPyContext *ctx, HPy, char *);
1179 typedef HPy (*HPyFunc_getattrofunc)(HPyContext *ctx, HPy, HPy);
1180 typedef int (*HPyFunc_setattrfunc)(HPyContext *ctx, HPy, char *, HPy);
1181 typedef int (*HPyFunc_setattrofunc)(HPyContext *ctx, HPy, HPy, HPy);
1182 typedef HPy (*HPyFunc_reprfunc)(HPyContext *ctx, HPy);
1183 typedef HPy_hash_t (*HPyFunc_hashfunc)(HPyContext *ctx, HPy);
1184 typedef HPy (*HPyFunc_richcmpfunc)(HPyContext *ctx, HPy, HPy, HPy_RichCmpOp);
1185 typedef HPy (*HPyFunc_getiterfunc)(HPyContext *ctx, HPy);
1186 typedef HPy (*HPyFunc_iternextfunc)(HPyContext *ctx, HPy);
1187 typedef HPy (*HPyFunc_descrgetfunc)(HPyContext *ctx, HPy, HPy, HPy);
1188 typedef int (*HPyFunc_descrsetfunc)(HPyContext *ctx, HPy, HPy, HPy);
1189 typedef int (*HPyFunc_initproc)(HPyContext *ctx, HPy self,
1190 const HPy *args, HPy_ssize_t nargs, HPy kw);
1191 typedef HPy (*HPyFunc_newfunc)(HPyContext *ctx, HPy type, const HPy *args,
1192 HPy_ssize_t nargs, HPy kw);
1193 typedef HPy (*HPyFunc_getter)(HPyContext *ctx, HPy, void *);
1194 typedef int (*HPyFunc_setter)(HPyContext *ctx, HPy, HPy, void *);
1195 typedef int (*HPyFunc_objobjproc)(HPyContext *ctx, HPy, HPy);
1196 typedef int (*HPyFunc_getbufferproc)(HPyContext *ctx, HPy, HPy_buffer *, int);
1197 typedef void (*HPyFunc_releasebufferproc)(HPyContext *ctx, HPy, HPy_buffer *);
1198 typedef int (*HPyFunc_traverseproc)(void *object, HPyFunc_visitproc visit, void *arg);
1199 typedef void (*HPyFunc_destructor)(HPyContext *ctx, HPy);
1200

1201 typedef void (*HPyFunc_destroyfunc)(void *);
1202

1203 // Note: separate type, because we need a different trampoline
1204 typedef HPy (*HPyFunc_mod_create)(HPyContext *ctx, HPy);
1205

1206

1207 /* ~~~ HPySlot_Slot ~~~
1208

1209 The following enum is used to generate autogen_hpyslot.h, which contains:
1210

1211 - The real definition of the enum HPySlot_Slot
1212

1213 - the macros #define _HPySlot_SIGNATURE_*
1214

1215 */
1216

1217 // NOTE: if you uncomment/enable a slot below, make sure to write a corresponding
1218 // test in test_slots.py
1219

1220 /* Note that the magic numbers are the same as CPython */
1221 typedef enum {
1222 HPy_bf_getbuffer = SLOT(1, HPyFunc_GETBUFFERPROC),
1223 HPy_bf_releasebuffer = SLOT(2, HPyFunc_RELEASEBUFFERPROC),
1224 HPy_mp_ass_subscript = SLOT(3, HPyFunc_OBJOBJARGPROC),
1225 HPy_mp_length = SLOT(4, HPyFunc_LENFUNC),
1226 HPy_mp_subscript = SLOT(5, HPyFunc_BINARYFUNC),
1227 HPy_nb_absolute = SLOT(6, HPyFunc_UNARYFUNC),
1228 HPy_nb_add = SLOT(7, HPyFunc_BINARYFUNC),
1229 HPy_nb_and = SLOT(8, HPyFunc_BINARYFUNC),
1230 HPy_nb_bool = SLOT(9, HPyFunc_INQUIRY),

(continues on next page)

2.8. API Reference 91

HPy, Release 0.9

(continued from previous page)

1231 HPy_nb_divmod = SLOT(10, HPyFunc_BINARYFUNC),
1232 HPy_nb_float = SLOT(11, HPyFunc_UNARYFUNC),
1233 HPy_nb_floor_divide = SLOT(12, HPyFunc_BINARYFUNC),
1234 HPy_nb_index = SLOT(13, HPyFunc_UNARYFUNC),
1235 HPy_nb_inplace_add = SLOT(14, HPyFunc_BINARYFUNC),
1236 HPy_nb_inplace_and = SLOT(15, HPyFunc_BINARYFUNC),
1237 HPy_nb_inplace_floor_divide = SLOT(16, HPyFunc_BINARYFUNC),
1238 HPy_nb_inplace_lshift = SLOT(17, HPyFunc_BINARYFUNC),
1239 HPy_nb_inplace_multiply = SLOT(18, HPyFunc_BINARYFUNC),
1240 HPy_nb_inplace_or = SLOT(19, HPyFunc_BINARYFUNC),
1241 HPy_nb_inplace_power = SLOT(20, HPyFunc_TERNARYFUNC),
1242 HPy_nb_inplace_remainder = SLOT(21, HPyFunc_BINARYFUNC),
1243 HPy_nb_inplace_rshift = SLOT(22, HPyFunc_BINARYFUNC),
1244 HPy_nb_inplace_subtract = SLOT(23, HPyFunc_BINARYFUNC),
1245 HPy_nb_inplace_true_divide = SLOT(24, HPyFunc_BINARYFUNC),
1246 HPy_nb_inplace_xor = SLOT(25, HPyFunc_BINARYFUNC),
1247 HPy_nb_int = SLOT(26, HPyFunc_UNARYFUNC),
1248 HPy_nb_invert = SLOT(27, HPyFunc_UNARYFUNC),
1249 HPy_nb_lshift = SLOT(28, HPyFunc_BINARYFUNC),
1250 HPy_nb_multiply = SLOT(29, HPyFunc_BINARYFUNC),
1251 HPy_nb_negative = SLOT(30, HPyFunc_UNARYFUNC),
1252 HPy_nb_or = SLOT(31, HPyFunc_BINARYFUNC),
1253 HPy_nb_positive = SLOT(32, HPyFunc_UNARYFUNC),
1254 HPy_nb_power = SLOT(33, HPyFunc_TERNARYFUNC),
1255 HPy_nb_remainder = SLOT(34, HPyFunc_BINARYFUNC),
1256 HPy_nb_rshift = SLOT(35, HPyFunc_BINARYFUNC),
1257 HPy_nb_subtract = SLOT(36, HPyFunc_BINARYFUNC),
1258 HPy_nb_true_divide = SLOT(37, HPyFunc_BINARYFUNC),
1259 HPy_nb_xor = SLOT(38, HPyFunc_BINARYFUNC),
1260 HPy_sq_ass_item = SLOT(39, HPyFunc_SSIZEOBJARGPROC),
1261 HPy_sq_concat = SLOT(40, HPyFunc_BINARYFUNC),
1262 HPy_sq_contains = SLOT(41, HPyFunc_OBJOBJPROC),
1263 HPy_sq_inplace_concat = SLOT(42, HPyFunc_BINARYFUNC),
1264 HPy_sq_inplace_repeat = SLOT(43, HPyFunc_SSIZEARGFUNC),
1265 HPy_sq_item = SLOT(44, HPyFunc_SSIZEARGFUNC),
1266 HPy_sq_length = SLOT(45, HPyFunc_LENFUNC),
1267 HPy_sq_repeat = SLOT(46, HPyFunc_SSIZEARGFUNC),
1268 //HPy_tp_alloc = SLOT(47, HPyFunc_X), NOT SUPPORTED
1269 //HPy_tp_base = SLOT(48, HPyFunc_X),
1270 //HPy_tp_bases = SLOT(49, HPyFunc_X),
1271 HPy_tp_call = SLOT(50, HPyFunc_KEYWORDS),
1272 //HPy_tp_clear = SLOT(51, HPyFunc_X), NOT SUPPORTED, use tp_traverse
1273 //HPy_tp_dealloc = SLOT(52, HPyFunc_X), NOT SUPPORTED
1274 //HPy_tp_del = SLOT(53, HPyFunc_X),
1275 //HPy_tp_descr_get = SLOT(54, HPyFunc_X),
1276 //HPy_tp_descr_set = SLOT(55, HPyFunc_X),
1277 //HPy_tp_doc = SLOT(56, HPyFunc_X),
1278 //HPy_tp_getattr = SLOT(57, HPyFunc_X),
1279 //HPy_tp_getattro = SLOT(58, HPyFunc_X),
1280 HPy_tp_hash = SLOT(59, HPyFunc_HASHFUNC),
1281 HPy_tp_init = SLOT(60, HPyFunc_INITPROC),
1282 //HPy_tp_is_gc = SLOT(61, HPyFunc_X),
1283 //HPy_tp_iter = SLOT(62, HPyFunc_X),
1284 //HPy_tp_iternext = SLOT(63, HPyFunc_X),
1285 //HPy_tp_methods = SLOT(64, HPyFunc_X), NOT SUPPORTED
1286 HPy_tp_new = SLOT(65, HPyFunc_NEWFUNC),
1287 HPy_tp_repr = SLOT(66, HPyFunc_REPRFUNC),

(continues on next page)

92 Chapter 2. Full table of contents:

HPy, Release 0.9

(continued from previous page)

1288 HPy_tp_richcompare = SLOT(67, HPyFunc_RICHCMPFUNC),
1289 //HPy_tp_setattr = SLOT(68, HPyFunc_X),
1290 //HPy_tp_setattro = SLOT(69, HPyFunc_X),
1291 HPy_tp_str = SLOT(70, HPyFunc_REPRFUNC),
1292 HPy_tp_traverse = SLOT(71, HPyFunc_TRAVERSEPROC),
1293 //HPy_tp_members = SLOT(72, HPyFunc_X), NOT SUPPORTED
1294 //HPy_tp_getset = SLOT(73, HPyFunc_X), NOT SUPPORTED
1295 //HPy_tp_free = SLOT(74, HPyFunc_X), NOT SUPPORTED
1296 HPy_nb_matrix_multiply = SLOT(75, HPyFunc_BINARYFUNC),
1297 HPy_nb_inplace_matrix_multiply = SLOT(76, HPyFunc_BINARYFUNC),
1298 //HPy_am_await = SLOT(77, HPyFunc_X),
1299 //HPy_am_aiter = SLOT(78, HPyFunc_X),
1300 //HPy_am_anext = SLOT(79, HPyFunc_X),
1301 HPy_tp_finalize = SLOT(80, HPyFunc_DESTRUCTOR),
1302

1303 /* extra HPy slots */
1304 HPy_tp_destroy = SLOT(1000, HPyFunc_DESTROYFUNC),
1305

1306 /**
1307 * Module create slot: the function receives loader spec and should
1308 * return an HPy handle representing the module. Currently, creating
1309 * real module objects cannot be done by user code, so the only other
1310 * useful thing that this slot can do is to create another object that
1311 * can work as a module, such as SimpleNamespace.
1312 */
1313 HPy_mod_create = SLOT(2000, HPyFunc_MOD_CREATE),
1314 /**
1315 * Module exec slot: the function receives module object that was created
1316 * by the runtime from HPyModuleDef. This slot can do any initialization
1317 * of the module, such as adding types. There can be multiple exec slots
1318 * and they will be executed in the declaration order.
1319 */
1320 HPy_mod_exec = SLOT(2001, HPyFunc_INQUIRY),
1321

1322 } HPySlot_Slot;

2.8.2 HPy Helper Functions

HPy Helper functions are functions (written in C) that will be compiled together with the HPy extension’s sources.
The appropriate source files are automatically added to the extension sources. The helper functions will, of course,
use the core API to interact with the interpreter. The main reason for having the helper functions in the HPy extension
is to avoid compatibility problems due to different compilers.

Argument Parsing

Implementation of HPyArg_Parse and HPyArg_ParseKeywords.

Note: those functions are runtime helper functions, i.e., they are not part of the HPy context, but are available to HPy
extensions to incorporate at compile time.

HPyArg_Parse parses positional arguments and replaces PyArg_ParseTuple. HPyArg_ParseKeywords parses posi-
tional and keyword arguments and replaces PyArg_ParseTupleAndKeywords.

HPy intends to only support the simpler format string types (numbers, bools) and handles. More complex types (e.g.
buffers) should be retrieved as handles and then processed further as needed.

2.8. API Reference 93

HPy, Release 0.9

Supported Formatting Strings

Numbers

b (int) [unsigned char] Convert a nonnegative Python integer to an unsigned tiny int, stored in a C un-
signed char.

B (int) [unsigned char] Convert a Python integer to a tiny int without overflow checking, stored in a C
unsigned char.

h (int) [short int] Convert a Python integer to a C short int.

H (int) [unsigned short int] Convert a Python integer to a C unsigned short int, without overflow check-
ing.

i (int) [int] Convert a Python integer to a plain C int.

I (int) [unsigned int] Convert a Python integer to a C unsigned int, without overflow checking.

l (int) [long int] Convert a Python integer to a C long int.

k (int) [unsigned long] Convert a Python integer to a C unsigned long without overflow checking.

L (int) [long long] Convert a Python integer to a C long long.

K (int) [unsigned long long] Convert a Python integer to a C unsigned long long without overflow
checking.

n (int) [HPy_ssize_t] Convert a Python integer to a C HPy_ssize_t.

f (float) [float] Convert a Python floating point number to a C float.

d (float) [double] Convert a Python floating point number to a C double.

Strings and buffers

These formats allow accessing an object as a contiguous chunk of memory. You don’t have to provide raw storage for
the returned unicode or bytes area.

In general, when a format sets a pointer to a buffer, the pointer is valid only until the corresponding HPy handle is
closed.

s (unicode) [const char*]

Convert a Unicode object to a C pointer to a character string. A pointer to an existing string is stored in the character
pointer variable whose address you pass. The C string is NUL-terminated. The Python string must not contain
embedded null code points; if it does, a ValueError exception is raised. Unicode objects are converted to C strings
using ‘utf-8’ encoding. If this conversion fails, a UnicodeError is raised.

Note: This format does not accept bytes-like objects and is therefore not suitable for filesystem paths.

94 Chapter 2. Full table of contents:

HPy, Release 0.9

Handles (Python Objects)

O (object) [HPy] Store a handle pointing to a generic Python object.

When using O with HPyArg_ParseKeywords, an HPyTracker is created and returned via the parameter ht. If
HPyArg_ParseKeywords returns successfully, you must call HPyTracker_Close on ht once the returned handles
are no longer needed. This will close all the handles created during argument parsing. There is no need to call
HPyTracker_Close on failure – the argument parser does this for you.

Miscellaneous

p (bool) [int] Tests the value passed in for truth (a boolean predicate) and converts the result to its equivalent
C true/false integer value. Sets the int to 1 if the expression was true and 0 if it was false. This accepts any valid
Python value. See Truth Value Testing for more information about how Python tests values for truth.

Options

| Indicates that the remaining arguments in the argument list are optional. The C variables corresponding to optional
arguments should be initialized to their default value — when an optional argument is not specified, the contents
of the corresponding C variable is not modified.

$ HPyArg_ParseKeywords() only: Indicates that the remaining arguments in the argument list are keyword-only.
Currently, all keyword-only arguments must also be optional arguments, so | must always be specified before $
in the format string.

: The list of format units ends here; the string after the colon is used as the function name in error messages. : and ;
are mutually exclusive and whichever occurs first takes precedence.

; The list of format units ends here; the string after the semicolon is used as the error message instead of the default
error message. : and ; are mutually exclusive and whichever occurs first takes precedence.

Argument Parsing API

int HPyArg_Parse(HPyContext *ctx, HPyTracker *ht, const HPy *args, size_t nargs, const char *fmt,
...)

Parse positional arguments.

Parameters

• ctx – The execution context.

• ht – An optional pointer to an HPyTracker. If the format string never results in new handles
being created, ht may be NULL. Currently only the O formatting option to this function
requires an HPyTracker.

• args – The array of positional arguments to parse.

• nargs – The number of elements in args.

• fmt – The format string to use to parse the arguments.

• ... – A va_list of references to variables in which to store the parsed arguments. The
number and types of the arguments should match the the format string, fmt.

Returns 0 on failure, 1 on success.

2.8. API Reference 95

https://docs.python.org/3/library/stdtypes.html#truth

HPy, Release 0.9

If a NULL pointer is passed to ht and an HPyTracker is required by the format string, a SystemError will
be raised.

If a pointer is provided to ht, the HPyTracker will always be created and must be closed with
HPyTracker_Close if parsing succeeds (after all handles returned are no longer needed). If parsing fails,
this function will close the HPyTracker automatically.

Examples:

Using HPyArg_Parse without an HPyTracker:

long a, b;
if (!HPyArg_Parse(ctx, NULL, args, nargs, "ll", &a, &b))

return HPy_NULL;
...

Using HPyArg_Parse with an HPyTracker:

long a, b;
HPyTracker ht;
if (!HPyArg_Parse(ctx, &ht, args, nargs, "ll", &a, &b))

return HPy_NULL;
...
HPyTracker_Close(ctx, ht);
...

Note: Currently HPyArg_Parse never requires the use of an HPyTracker. The option exists only to support
releasing temporary storage used by future format string codes (e.g. for character strings).

int HPyArg_ParseKeywords(HPyContext *ctx, HPyTracker *ht, const HPy *args, size_t nargs, HPy
kwnames, const char *fmt, const char *keywords[], ...)

Parse positional and keyword arguments.

Parameters

• ctx – The execution context.

• ht – An optional pointer to an HPyTracker. If the format string never results in new handles
being created, ht may be NULL. Currently only the O formatting option to this function
requires an HPyTracker.

• args – The array of positional arguments to parse.

• nargs – The number of elements in args.

• kwnames – A handle to the tuple of keyword argument names (may be HPy_NULL). The
values of the keyword arguments are appended to args. Argument nargs does not include
the keyword argument count.

• fmt – The format string to use to parse the arguments.

• keywords – A NULL-terminated array of argument names. The number of names should
match the format string provided. Positional only arguments should have the name ""
(i.e. the null-terminated empty string). Positional only arguments must preceded all other
arguments.

• ... – A va_list of references to variables in which to store the parsed arguments. The
number and types of the arguments should match the the format string, fmt.

Returns 0 on failure, 1 on success.

96 Chapter 2. Full table of contents:

HPy, Release 0.9

If a NULL pointer is passed to ht and an HPyTracker is required by the format string, a SystemError will
be raised.

If a pointer is provided to ht, the HPyTracker will always be created and must be closed with
HPyTracker_Close if parsing succeeds (after all handles returned are no longer needed). If parsing fails,
this function will close the HPyTracker automatically.

Examples:

Using HPyArg_ParseKeywords without an HPyTracker:

long a, b;
if (!HPyArg_ParseKeywords(ctx, NULL, args, nargs, kwnames, "ll", &a, &b))

return HPy_NULL;
...

Using HPyArg_ParseKeywords with an HPyTracker:

HPy a, b;
HPyTracker ht;
if (!HPyArg_ParseKeywords(ctx, &ht, args, nargs, kwnames, "OO", &a, &b))

return HPy_NULL;
...
HPyTracker_Close(ctx, ht);
...

Note: Currently HPyArg_ParseKeywords only requires the use of an HPyTracker when the O format is
used. In future other new format string codes (e.g. for character strings) may also require it.

int HPyArg_ParseKeywordsDict(HPyContext *ctx, HPyTracker *ht, const HPy *args, HPy_ssize_t
nargs, HPy kw, const char *fmt, const char *keywords[], ...)

Parse positional arguments and keyword arguments in a dict.

Parameters

• ctx – The execution context.

• ht – An optional pointer to an HPyTracker. If the format string never results in new handles
being created, ht may be NULL. Currently only the O formatting option to this function
requires an HPyTracker.

• args – The array of positional arguments to parse.

• nargs – The number of elements in args.

• kw – A handle to the dictionary of keyword arguments (may be HPy_NULL).

• fmt – The format string to use to parse the arguments.

• keywords – A NULL-terminated array of argument names. The number of names should
match the format string provided. Positional only arguments should have the name ""
(i.e. the null-terminated empty string). Positional only arguments must preceded all other
arguments.

• ... – A va_list of references to variables in which to store the parsed arguments. The
number and types of the arguments should match the the format string, fmt.

Returns 0 on failure, 1 on success.

If a NULL pointer is passed to ht and an HPyTracker is required by the format string, a SystemError will
be raised.

2.8. API Reference 97

HPy, Release 0.9

If a pointer is provided to ht, the HPyTracker will always be created and must be closed with
HPyTracker_Close if parsing succeeds (after all handles returned are no longer needed). If parsing fails,
this function will close the HPyTracker automatically.

For examples, see HPyArg_ParseKeywords().

Building Complex Python Objects

Implementation of HPy_BuildValue.

Note: HPy_BuildValue() is a runtime helper functions, i.e., it is not a part of the HPy context, but is available to
HPy extensions to incorporate at compile time.

HPy_BuildValue creates a new value based on a format string from the values passed in variadic arguments.
Returns HPy_NULL in case of an error and raises an exception.

HPy_BuildValue does not always build a tuple. It builds a tuple only if its format string contains two or more
format units. If the format string is empty, it returns None; if it contains exactly one format unit, it returns whatever
object is described by that format unit. To force it to return a tuple of size 0 or one, parenthesize the format string.

Building complex values with HPy_BuildValue is more convenient than the equivalent code that uses more gran-
ular APIs with proper error handling and cleanup. Moreover, HPy_BuildValue provides straightforward way to
port existing code that uses Py_BuildValue.

HPy_BuildValue always returns a new handle that will be owned by the caller. Even an artificial example
HPy_BuildValue(ctx, "O", h) does not simply forward the value stored in h but duplicates the handle.

Supported Formatting Strings

Numbers

i (int) [int] Convert a plain C int to a Python integer object.

l (int) [long int] Convert a C long int to a Python integer object.

I (int) [unsigned int] Convert a C unsigned int to a Python integer object.

k (int) [unsigned long] Convert a C unsigned long to a Python integer object.

L (int) [long long] Convert a C long long to a Python integer object.

K (int) [unsigned long long] Convert a C unsigned long long to a Python integer object.

n (int) [HPy_ssize_t] Convert a C HPy_ssize_t to a Python integer object.

f (float) [float] Convert a C float to a Python floating point number.

d (float) [double] Convert a C double to a Python floating point number.

98 Chapter 2. Full table of contents:

HPy, Release 0.9

Collections

(items) (tuple) [matching-items] Convert a sequence of C values to a Python tuple with the same num-
ber of items.

[items] (list) [matching-items] Convert a sequence of C values to a Python list with the same number
of items.

{key:value} (dict) [matching-items] Convert a sequence of C values to a Python dict with the same
number of items.

Misc

O (Python object) [HPy] Pass an untouched Python object represented by the handle.

If the object passed in is a HPy_NULL, it is assumed that this was caused because the call producing the
argument found an error and set an exception. Therefore, HPy_BuildValue will also immediately stop and
return HPy_NULL but will not raise any new exception. If no exception has been raised yet, SystemError is set.

Any HPy handle passed to HPy_BuildValue is always owned by the caller. HPy_BuildValue never closes the
handle nor transfers its ownership. If the handle is used, then HPy_BuildValue creates a duplicate of the handle.

S (Python object) [HPy] Alias for ‘O’.

API

HPy HPy_BuildValue(HPyContext *ctx, const char *fmt, ...)
Creates a new value based on a format string from the values passed in variadic arguments.

Parameters

• ctx – The execution context.

• fmt – The format string (ASCII only; must not be NULL). For details, see Supported For-
matting Strings.

• ... – Variable arguments according to the provided format string.

Returns A handle to the built Python value or HPy_NULL in case of errors.

String Formatting Helpers

HPy string formatting helpers.

Note: these functions are runtime helper functions, i.e., they are not part of the HPy context ABI, but are available to
HPy extensions to incorporate at compile time.

The formatting helper functions are: HPyUnicode_FromFormat, HPyUnicode_FromFormatV, and
HPyErr_Format.

2.8. API Reference 99

HPy, Release 0.9

Supported Formatting Units

%% - The literal % character.

Compatible with C (s)printf:

%c [int]

%d [int]

%u [unsigned int]

%ld [long]

%li [long]

%lu [unsigned long]

%lld [long long]

%lli [long long]

%llu [unsigned long long]

%zd [HPy_ssize_t]

%zi [HPy_ssize_t]

%zu [size_t]

%i [int]

%x [int]

%s [const char*]

%p [const void*] Guaranteed to start with the literal ‘0x’ regardless of what the platform’s printf yields. How-
ever, there is no guarantee for zero-padding after the ‘0x’ prefix. Some systems pad the pointer to 32 or 64 digits
depending on the architecture, some do not zero pad at all. Moreover, there is no guarantee whether the letters
will be capitalized or not.

Python specific:

%A [HPy] The result of calling HPy_Ascii.

%U [HPy] A Unicode object.

%V [HPy, const char*] A Unicode object (which may be HPy_NULL) and a null-terminated C character array
as a second parameter (which will be used, if the first parameter is HPy_NULL).

%S [HPy] The result of calling HPy_Str.

%R [HPy] The result of calling HPy_Repr.

100 Chapter 2. Full table of contents:

HPy, Release 0.9

Additional flags:

The format is %[0]{width}.{precision}{formatting-unit}.

The precision flag for numbers gives the minimal number of digits (i.e., excluding the minus sign). Shorter
numbers are padded with zeros. For strings it gives the maximum number of characters, i.e., the string may be
shortened if it is longer than precision.

The width determines how many characters should be output. If the formatting result with width flag applied is
shorter, then it is padded from left with spaces. If it is longer, the result will not be shortened.

The 0 flag is supported only for numeric units: if present, the number is padded to desired width with zeros instead
of spaces. Unlike with spaces padding, the minus sign is shifted to the leftmost position with zero padding.

The width formatter unit is number of characters rather than bytes. The precision formatter unit is number of bytes
for %s and %V (if the HPy argument is HPy_NULL), and a number of characters for %A, %U, %S, %R and %V (if the
HPy argument is not HPy_NULL).

Compatibility with CPython API

HPy is more strict in these cases:

CPython API ignores width, precision, zero-padding flag for formatting units that do not support them: %c and %p,
but HPy raises a system error in such cases.

CPython API ignores zero-padding for “string” formatting units, while HPy raises a system error in such cases.

Note: users should not rely on these system errors, as HPy may choose to support some of those flags in the future.

Struct Sequences

Struct sequences are subclasses of tuple. Similar to the API for creating tuples, HPy provides an API to create struct
sequences. This is a builder API such that the struct sequence is guaranteed not to be written after it is created.

Note: There is no specific getter function for struct sequences. Just use one of HPy_GetItem(),
HPy_GetItem_i(), or HPy_GetItem_s().

struct HPyStructSequence_Field
Describes a field of a struct sequence.

const char *name
Name (UTF-8 encoded) for the field or NULL to end the list of named fields. Set the name to
HPyStructSequence_UnnamedField to leave it unnamed.

const char *doc
Docstring of the field (UTF-8 encoded); may be NULL.

struct HPyStructSequence_Desc
Contains the meta information of a struct sequence type to create. Struct sequences are subclasses of tuple. The
index in the fields array of the descriptor determines which field of the struct sequence is described.

const char *name
Name of the struct sequence type (UTF-8 encoded; must not be NULL).

const char *doc
Docstring of the type (UTF-8 encoded); may be NULL.

2.8. API Reference 101

HPy, Release 0.9

HPyStructSequence_Field *fields
Pointer to NULL-terminated array with field names of the new type (must not be NULL).

extern const char *const HPyStructSequence_UnnamedField
A marker that can be used as struct sequence field name to indicate that a field should be anonymous (i.e. cannot
be accessed by a name but only by numeric index).

HPy HPyStructSequence_NewType(HPyContext *ctx, HPyStructSequence_Desc *desc)
Create a new struct sequence type from a descriptor. Instances of the resulting type can be created with
HPyStructSequence_New().

Parameters

• ctx – The execution context.

• desc – The descriptor of the struct sequence type to create (must not be NULL):

Returns A handle to the new struct sequence type or HPy_NULL in case of errors.

HPy HPyStructSequence_New(HPyContext *ctx, HPy type, HPy_ssize_t nargs, HPy *args)
Creates a new instance of type initializing it with the given arguments.

Since struct sequences are immutable objects, they need to be initialized at instantiation. This function
will create a fresh instance of the provided struct sequence type. The type must have been created with
HPyStructSequence_NewType().

Parameters

• ctx – The execution context.

• type – A struct sequence type (must not be HPy_NULL). If the passed object is not a type,
the behavior is undefined. If the given type is not appropriate, a TypeError will be raised.

• nargs – The number of arguments in args. If this argument is not exactly the number of
fields of the struct sequence, a TypeError will be raised.

• args – An array of HPy handles to Python objects to be used for initializing the struct
sequence. If nargs > 0 then this argument must not be NULL.

Returns A new instance of type or HPy_NULL if an error occurred.

Misc Helpers

int HPyHelpers_AddType(HPyContext *ctx, HPy obj, const char *name, HPyType_Spec *hpyspec, HPy-
Type_SpecParam *params)

Create a type and add it as an attribute on the given object. The type is created using HPyType_FromSpec().
The object is often a module that the type is being added to.

Parameters

• ctx – The execution context.

• obj – A handle to the object the type is being added to (often a module).

• name – The name of the attribute on the object to assign the type to.

• hpyspec – The type spec to use to create the type.

• params – The type spec parameters to use to create the type.

Returns 0 on failure, 1 on success.

Examples:

Using HPyHelpers_AddType without any HPyType_SpecParam parameters:

102 Chapter 2. Full table of contents:

HPy, Release 0.9

if (!HPyHelpers_AddType(ctx, module, "MyType", hpyspec, NULL))
return HPy_NULL;

...

Using HPyHelpers_AddType with HPyType_SpecParam parameters:

HPyType_SpecParam params[] = {
{ HPyType_SpecParam_Base, ctx->h_LongType },
{ 0 }

};

if (!HPyHelpers_AddType(ctx, module, "MyType", hpyspec, params))
return HPy_NULL;

...

int HPyHelpers_PackArgsAndKeywords(HPyContext *ctx, const HPy *args, size_t nargs, HPy kw-
names, HPy *out_pos_args, HPy *out_kwd)

Convert positional/keyword argument vector to argument tuple and keywords dictionary.

This helper function is useful to convert arguments from HPy’s calling convention to the legacy CPython tp_call
calling convention. HPy’s calling convention is similar to CPython’s fastcall/vectorcall calling convention where
positional and keyword arguments are passed as a C array, the number of positional arguments is explicitly given
by an argument and the names of the keyword arguments are provided in a tuple.

For an example on how to use this function, see section Incremental Migration to HPy’s Calling Protocol.

Parameters

• ctx – The execution context.

• args – A pointer to an array of positional and keyword arguments. This argument must not
be NULL if nargs > 0 or HPy_Length(ctx, kwnames) > 0.

• nargs – The number of positional arguments in args.

• kwnames – A handle to the tuple of keyword argument names (may be HPy_NULL). The
values of the keyword arguments are also passed in args appended to the positional argu-
ments. Argument nargs does not include the keyword argument count.

• out_pos_args – A pointer to a variable where to write the created positional arguments
tuple to. If there are no positional arguments (i.e. nargs == 0), then HPy_NULL will be
written. The pointer will not be used if any error occurs during conversion.

• out_kwd – A pointer to a variable where to write the created keyword arguments dictionary
to. If there are not keyword arguments (i.e. HPy_Length(ctx, kwnames) == 0),
then HPy_NULL will be written. The pointer will not be used if any error occurs during
conversion.

Returns 0 on failure, 1 on success.

2.8. API Reference 103

HPy, Release 0.9

2.8.3 Inline Helper Functions

Inline Helper functions are static inline functions (written in C). Those functions are usually small conve-
nience functions that everyone could write but in order to avoid duplicated effort, they are defined by HPy.

Inline Helpers

Inline Helper functions are static inline functions (written in C). Those functions are usually small conve-
nience functions that everyone could write but in order to avoid duplicated effort, they are defined by HPy.

One category of inline helpers are functions that convert the commonly used but not fixed width C types, such as int,
or long long, to HPy API. The HPy API always uses well-defined fixed width types like int32 or unsigned
int8.

HPY_INLINE_HELPERS_H

HPy HPyErr_SetFromErrno(HPyContext *ctx, HPy h_type)
Same as HPyErr_SetFromErrnoWithFilenameObjects() but passes HPy_NULL to the optional ar-
guments.

Parameters

• ctx – The execution context.

• h_type – The exception type to raise.

Returns always returns HPy_NULL

HPy HPyErr_SetFromErrnoWithFilenameObject(HPyContext *ctx, HPy h_type, HPy filename)
Same as HPyErr_SetFromErrnoWithFilenameObjects() but passes HPy_NULL to the last (op-
tional) argument.

Parameters

• ctx – The execution context.

• h_type – The exception type to raise.

• filename – a filename; may be HPy_NULL

Returns always returns HPy_NULL

HPy HPyTuple_Pack(HPyContext *ctx, HPy_ssize_t n, ...)
Create a tuple from arguments.

A convenience function that will allocate a temporary array of HPy elements and use
HPyTuple_FromArray() to create a tuple.

Parameters

• ctx – The execution context.

• n – The number of elements to pack into a tuple.

• ... – Variable number of HPy arguments.

Returns A new tuple with n elements or HPy_NULL in case of an error occurred.

int HPy_DelAttr(HPyContext *ctx, HPy obj, HPy name)
Delete an attribute.

This is the equivalent of the Python statement del o.attr_name.

Parameters

104 Chapter 2. Full table of contents:

HPy, Release 0.9

• ctx – The execution context.

• obj – The object with the attribute.

• name – The name (an unicode object) of the attribute.

Returns 0 on success; -1 in case of an error.

int HPy_DelAttr_s(HPyContext *ctx, HPy obj, const char *utf8_name)
Delete an attribute.

This is the equivalent of the Python statement del o.attr_name.

Parameters

• ctx – The execution context.

• obj – The object with the attribute.

• utf8_name – The name (an UTF-8 encoded C string) of the attribute.

Returns 0 on success; -1 in case of an error.

HPy HPyLong_FromLong(HPyContext *ctx, long l)
Create a Python long object from a C long value.

Parameters

• ctx – The execution context.

• l – A C long value.

Returns A Python long object with the value of l or HPy_NULL on failure.

HPy HPyLong_FromUnsignedLong(HPyContext *ctx, unsigned long l)
Create a Python long object from a C unsigned long value.

Parameters

• ctx – The execution context.

• l – A C unsigned long value.

Returns A Python long object with the value of l or HPy_NULL on failure.

HPy HPyLong_FromLongLong(HPyContext *ctx, long long l)
Create a Python long object from a C long long value.

Parameters

• ctx – The execution context.

• l – A C long long value.

Returns A Python long object with the value of l or HPy_NULL on failure.

HPy HPyLong_FromUnsignedLongLong(HPyContext *ctx, unsigned long long l)
Create a Python long object from a C unsigned long long value.

Parameters

• ctx – The execution context.

• l – A C unsigned long long value.

Returns A Python long object with the value of l or HPy_NULL on failure.

2.8. API Reference 105

HPy, Release 0.9

long HPyLong_AsLong(HPyContext *ctx, HPy h)
Return a C long representation of the given Python long object. If the object is not an instance of Python long,
the object’s __index__ method (if present) will be used to convert it to a Python long object.

This function will raise an OverflowError if the value of the object is out of range for a C long.

This function will raise a TypeError if:

• The object is neither an instance of Python long nor it provides an __index__ method.

• If the __index__ method does not return an instance of Python long.

Parameters

• ctx – The execution context.

• h – Either an instance of Python long or an object that provides an __index__ method
(which returns a Python long).

Returns A C long value. Errors will be indicated with return value -1. In this case, use
HPyErr_Occurred() to disambiguate.

unsigned long HPyLong_AsUnsignedLong(HPyContext *ctx, HPy h)
Return a C unsigned long representation of the given Python long object.

This function will raise a TypeError if the object is not an instance of Python long and it will raise an
OverflowError if the object’s value is negative or out of range for a C unsigned long.

Parameters

• ctx – The execution context.

• h – The object to convert to C unsigned long (must be an instance of Python long).

Returns A C unsigned long value. Errors will be indicated with return value (unsigned
long)-1. In this case, use HPyErr_Occurred() to disambiguate.

unsigned long HPyLong_AsUnsignedLongMask(HPyContext *ctx, HPy h)
Return a C unsigned long representation of the given Python long object. If the object is not an instance of
Python long, the object’s __index__ method (if present) will be used to convert it to a Python long object.

If the object’s value is out of range for an unsigned long, return the reduction of that value modulo
ULONG_MAX + 1. Therefore, this function will NOT raise an OverflowError if the value of the object is
out of range for a C unsigned long.

Parameters

• ctx – The execution context.

• h – Either an instance of Python long or an object that provides an __index__ method
(which returns a Python long).

Returns A C unsigned long value. Errors will be indicated with return value (unsigned
long)-1. In this case, use HPyErr_Occurred() to disambiguate.

long long HPyLong_AsLongLong(HPyContext *ctx, HPy h)
Return a C long long representation of the given Python long object. If the object is not an instance of
Python long, the object’s __index__ method (if present) will be used to convert it to a Python long object.

This function will raise an OverflowError if the value of the object is out of range for a C long long.

This function will raise a TypeError if:

• The object is neither an instance of Python long nor it provides an __index__ method.

106 Chapter 2. Full table of contents:

HPy, Release 0.9

• If the __index__ method does not return an instance of Python long.

Parameters

• ctx – The execution context.

• h – Either an instance of Python long or an object that provides an __index__ method
(which returns a Python long).

Returns A C long long value. Errors will be indicated with return value -1. In this case, use
HPyErr_Occurred() to disambiguate.

unsigned long long HPyLong_AsUnsignedLongLong(HPyContext *ctx, HPy h)
Return a C unsigned long long representation of the given Python long object.

This function will raise a TypeError if the object is not an instance of Python long and it will raise an
OverflowError if the object’s value is negative or out of range for a C unsigned long.

Parameters

• ctx – The execution context.

• h – The object to convert to C unsigned long long (must be an instance of Python
long).

Returns A C unsigned long long value. Errors will be indicated with return value
(unsigned long long)-1. In this case, use HPyErr_Occurred() to disambiguate.

unsigned long long HPyLong_AsUnsignedLongLongMask(HPyContext *ctx, HPy h)
Return a C unsigned long long representation of the given Python long object. If the object is not an
instance of Python long, the object’s __index__ method (if present) will be used to convert it to a Python long
object.

If the object’s value is out of range for an unsigned long long, return the reduction of that value modulo
ULLONG_MAX + 1. Therefore, this function will NOT raise an OverflowError if the value of the object
is out of range for a C unsigned long long.

Parameters

• ctx – The execution context.

• h – Either an instance of Python long or an object that provides an __index__ method
(which returns a Python long).

Returns A C unsigned long value. Errors will be indicated with return value (unsigned
long long)-1. In this case, use HPyErr_Occurred() to disambiguate.

HPy HPyBool_FromLong(HPyContext *ctx, long v)
Returns Python True or False depending on the truth value of v.

Parameters

• ctx – The execution context.

• v – A C long value.

Returns Python True if v != 0; Python False otherwise.

HPy_ssize_t HPySlice_AdjustIndices(HPyContext *_HPy_UNUSED_ARG)ctx
, HPy_ssize_t length, HPy_ssize_t *start, HPy_ssize_t *stop, HPy_ssize_t stepAdjust start/end slice indices
assuming a sequence of the specified length.

Out of bounds indices are clipped in a manner consistent with the handling of normal slices. This function
cannot fail and does not call interpreter routines.

2.8. API Reference 107

HPy, Release 0.9

Parameters

• ctx – The execution context.

• length – The length of the sequence that should be assumed for adjusting the indices.

• start – Pointer to the start value (must not be NULL).

• stop – Pointer to the stop value (must not be NULL).

• step – The step value of the slice (must not be 0)

Returns Return the length of the slice. Always successful. Doesn’t call Python code.

HPy HPy_CallMethodTupleDict_s(HPyContext *ctx, const char *utf8_name, HPy receiver, HPy
args, HPy kw)

Call a method of a Python object.

This is a convenience function for calling a method. It uses HPy_GetAttr_s() and
HPy_CallTupleDict() to perform the method call.

Parameters

• ctx – The execution context.

• utf8_name – The name (UTF-8 encoded C string) of the method. Must not be NULL.

• receiver – A handle to the receiver of the call (i.e. the self). Must not be HPy_NULL.

• args – A handle to a tuple containing the positional arguments (must not be HPy_NULL
but can, of course, be empty).

• kw – A handle to a Python dictionary containing the keyword arguments (may be
HPy_NULL).

Returns The result of the call on success, or HPy_NULL in case of an error.

HPy HPy_CallMethodTupleDict(HPyContext *ctx, HPy name, HPy receiver, HPy args, HPy kw)
Call a method of a Python object.

This is a convenience function for calling a method. It uses HPy_GetAttr() and HPy_CallTupleDict()
to perform the method call.

Parameters

• ctx – The execution context.

• name – A handle to the name (a Unicode object) of the method. Must not be HPy_NULL.

• receiver – A handle to the receiver of the call (i.e. the self). Must not be HPy_NULL.

• args – A handle to a tuple containing the positional arguments (must not be HPy_NULL
but can, of course, be empty).

• kw – A handle to a Python dictionary containing the keyword arguments (may be
HPy_NULL).

Returns The result of the call on success, or HPy_NULL in case of an error.

108 Chapter 2. Full table of contents:

HPy, Release 0.9

2.9 Contributing

2.9.1 Getting Started

TBD

2.9.2 Adding New API

1. Add the function to hpy/tools/autogen/public_api.h. If the CPython equivalent function name is
not the same (after removing the leading H, add an appropriate CPython function mapping in hpy/tools/
autogen/conf.py. If the signature is complicated or there is no clear equivalent function, the mapping
should be None, and follow the directions in the next step. Otherwise all the needed functions will be autogen-
erated.

2. If the function cannot be autogenerated (i.e. the mapping does not exist), you must write the wrapper by hand.
Add the function to NO_WRAPPER in hpy/tools/autogen/debug.py, and add a ctx_fname func-
tion to hyp/devel/src/runtime/*.c (possibly adding the new file to setup.py), add a debug wrap-
per to hpy/debug/src/debug_ctx.c, add a implementation that uses the ctx variant to hpy/devel/
include/hpy/cpython/misc.h and add the declaration to hpy/devel/include/hpy/runtime/
ctx_funcs.h.

3. Run make autogen which will turn the mapping into autogenerated functions

4. Add a test for the functionality

5. Build with python setup.py build_ext. After that works, build with python -m pip install
-e ., then run the test with python -m pytest

2.10 Misc Notes

2.10.1 Embedding HPy modules

There might be cases where it is beneficial or even necessary to embed multiple HPy modules into one library. HPy
itself already makes use of that. The debug and the trace module do not have individual libraries but are embedded
into the universal module.

To achieve that, the embedder will use the macro HPy_MODINIT several times. Unfortunately, this macro defines
global state and cannot repeatedly be used by default. In order to correctly embed several HPy modules into one
library, the embedder needs to consider following:

• The modules must be compiled with preprocessor macro HPY_EMBEDDED_MODULES defined to enable this
feature.

• There is one major restriction: All HPy-specific module pieces must be in the same compilation unit. HPy-
specific pieces are things like the module’s init function (HPy_MODINIT) and all slots, members, methods of
the module or any type of it (HPyDef_*). The implementation functions (usually the *_impl functions) of the
slots, members, methods, etc. and any helper functions may still be in different compilation units. The reason
for this is that the global state induced by HPy_MODINIT is, of course, made local (e.g. using C modifier
static).

• It is also necessary to use macro HPY_MOD_EMBEDDABLE before the first usage of any HPyDef_* macro.

Also refer to the API reference HPy Module.

Example

2.9. Contributing 109

HPy, Release 0.9

// compile with -DHPY_EMBEDDED_MODULES

HPY_MOD_EMBEDDABLE(hpymodA)

HPyDef_METH(foo, /* ... */)
static HPy foo_impl(/* ... */)
{

// ...
}

HPy_MODINIT(extension_name, hpymodA)

2.11 Changelog

2.11.1 Version 0.9 (April 25th, 2023)

This release adds numerous major features and indicates the end of HPy’s alhpa phase. We’ve migrated several key
packages to HPy (for a list, see our website https://hpyproject.org) and we are now confident that HPy is mature
enough for being used as serious extension API. We also plan that the next major release will be 1.0.

Major new features

Support subclasses of built-in types It is now possible to create pure HPy types that inherit from built-in types like
type or float. This was already possible before but in a very limited way, i.e., by setting HPyType_Spec.
basicsize to 0. In this case, the type implicitly inherited the basic size of the supertype but that also means
that you cannot have a custom C struct. It is now possible inherit from a built-in type AND have a custom C
struct. For further reference, see HPyType_Spec.builtin_shape and HPyType_BuiltinShape.

Support for metaclasses HPy now supports creating types with metaclasses. This can be done by passing type speci-
fication parameter with kind HPyType_SpecParam_Metaclass when calling HPyType_FromSpec().

HPy Hybrid ABI In addition to CPython ABI and HPy Universal ABI, we now introduced the Hybrid ABI. The major
difference is that whenever you use a legacy API like HPy_AsPyObject() or HPy_FromPyObject(), the
prdouced binary will then be specific to one interpreter. This was necessary to ensure that universal binaries are
really portable and can be used on any HPy-capable interpreter.

Trace Mode Similar to the Debug Mode, HPy now provides the Trace Mode that can be enabled at runtime and helps
analyzing API usage and identifying performance issues.

Multi-phase Module Initialization HPy now support multi-phase module initialization which is an important feature
in particular needed for two important use cases: (1) module state support (which is planned to be introduced in
the next major release), and (2) subinterpreters. We decided to drop support for single-phase module initializa-
tion since this makes the API cleaner and easier to use.

HPy Calling Protocol This was a big missing piece and is now eventually available. It enables slot HPy_tp_call,
which can now be used in the HPy type specification. We decided to use a calling convention similar to
CPython’s vectorcall calling convention. This is: the arguments are passed in a C array and the keyword ar-
gument names are provided as a Python tuple. Before this release, the only way to create a callable type was
to set the special method __call__. However, this has several disadvantages. In particlar, poor performance
on CPython (and maybe other implementations) and it was not possible to have specialized call function imple-
mentations per object (see HPy_SetCallFunction())

110 Chapter 2. Full table of contents:

https://hpyproject.org

HPy, Release 0.9

Added APIs

Deleting attributes and items HPy_DelAttr(), HPy_DelAttr_s(), HPy_DelItem(),
HPy_DelItem_i(), HPy_DelItem_s()

Capsule API HPyCapsule_New(), HPyCapsule_IsValid(), HPyCapsule_Get(),
HPyCapsule_Set()

Eval API HPy_Compile_s() and HPy_EvalCode()

Formatting helpers HPyUnicode_FromFormat() and HPyErr_Format()

Contextvar API HPyContextVar_New(), HPyContextVar_Get(), HPyContextVar_Set()

Unicode API HPyUnicode_FromEncodedObject() and HPyUnicode_Substring()

Dict API HPyDict_Keys() and HPyDict_Copy()

Type API HPyType_GetName() and HPyType_IsSubtype()

Slice API HPySlice_Unpack() and HPySlice_AdjustIndices()

Structseq API HPyStructSequence_NewType(), HPyStructSequence_New()

Call API HPy_Call(), HPy_CallMethod(), HPy_CallMethodTupleDict(),
HPy_CallMethodTupleDict_s()

HPy call protocol HPy_SetCallFunction()

Debug mode

• Detect closing and returning (without dup) of context handles

• Detect invalid usage of stored HPyContext * pointer

• Detect invalid usage of tuple and list builders

• Added Windows support for checking invalid use of raw data pointers (e.g HPyUnicode_AsUTF8AndSize)
after handle was closed.

• Added support for backtrace on MacOS

Documentation

• Added incremental Porting Example

• Added HPy Quickstart guide

• Extended API Reference

• Added HPy Core API Function Index

• Added possiblity to generate examples from tests with argument --dump-dir (see HPy unit tests)

• Added initial Contributing docs

2.11. Changelog 111

HPy, Release 0.9

Incompatible changes to version 0.0.4

• Simplified HPyDef_* macros

• Changed macro HPy_MODINIT because of multi-phase module init support.

• Replace environment variable HPY_DEBUG by HPY (see Debug Mode or Trace Mode).

• Changed signature of HPyFunc_VARARGS and HPyFunc_ KEYWORDS to align with HPy’s call protocol
calling convention.

Supported Python versions

• Added Python 3.11 support

• Preliminary Python 3.12 support

• Dropped Python 3.6 support (since EOL)

• Dropped Python 3.7 support (since EOL by June 2023)

Misc

• Ensure deterministic auto-generation

• Ensure ABI backwards compatibility

– Explicitly define slot within HPyContext of function pointers and handles

– Compile HPy ABI version into binary and verify at load time

• Added proper support for object members HPyMember_OBJECT

• Changed HPyBytes_AsString() and HPyBytes_AS_STRING() to return const char *

• Use fixed-width integers in context functions

2.11.2 Version 0.0.4 (May 25th, 2022)

New Features/API:

• HPy headers are C++ compliant

• Python 3.10 support

• HPyField: References to Python objects that can be stored in raw native memory owned by Python objects.

– New API functions: HPyField_Load, HPyField_Store

• HPyGlobal: References to Python objects that can be stored into a C global variable.

– New API functions: HPyGlobal_Load, HPyGlobal_Store

– Note: HPyGlobal does not allow to share Python objects between (sub)interpreters

• GIL support - New API functions: HPy_ReenterPythonExecution, HPy_LeavePythonExecution

• Value building support (HPy_BuildValue)

• New type slots

– HPy_mp_ass_subscript, HPy_mp_length, HPy_mp_subscript

– HPy_tp_finalize

112 Chapter 2. Full table of contents:

https://github.com/hpyproject/hpy/blob/master/hpy/tools/autogen/public_api.h#L323
https://github.com/hpyproject/hpy/blob/master/hpy/tools/autogen/public_api.h#L383
https://github.com/hpyproject/hpy/blob/master/hpy/tools/autogen/public_api.h#L358
https://github.com/hpyproject/hpy/blob/master/hpy/devel/src/runtime/buildvalue.c#L4

HPy, Release 0.9

• Other new API functions

– HPyErr_SetFromErrnoWithFilename, HPyErr_SetFromErrnoWithFilenameObjects

– HPyErr_ExceptionMatches

– HPyErr_WarnEx

– HPyErr_WriteUnraisable

– HPy_Contains

– HPyLong_AsVoidPtr

– HPyLong_AsDouble

– HPyUnicode_AsASCIIString, HPyUnicode_DecodeASCII

– HPyUnicode_AsLatin1String, HPyUnicode_DecodeLatin1

– HPyUnicode_DecodeFSDefault, HPyUnicode_DecodeFSDefaultAndSize

– HPyUnicode_ReadChar

Debug mode:

• Support activation of debug mode via environment variable HPY_DEBUG

• Support capturing stack traces of handle allocations

• Check for invalid use of raw data pointers (e.g HPyUnicode_AsUTF8AndSize) after handle was closed.

• Detect invalid handles returned from extension functions

• Detect incorrect closing of handles passed as arguments

Misc Changes:

• Removed unnecessary prefix "m_" from fields of HPyModuleDef (incompatible change)

• For HPy implementors: new pytest mark for HPy tests assuming synchronous GC

2.11.3 Version 0.0.3 (September 22nd, 2021)

This release adds various new API functions (see below) and extends the debug mode with the ability to track closed
handles. The default ABI mode now is ‘universal’ for non-CPython implementations. Also, the type definition of
HPyContext was changed and it’s no longer a pointer type. The name of the HPy dev package was changed to ‘hpy’
(formerly: ‘hpy.devel’). Macro HPy_CAST was replaced by HPy_AsStruct.

New features:

• Added helper HPyHelpers_AddType for creating new types

• Support format specifier ‘s’ in HPyArg_Parse

• Added API functions: HPy_Is, HPy_AsStructLegacy (for legacy types), HPyBytes_FromStringAndSize,
HPyErr_NewException, HPyErr_NewExceptionWithDoc, HPyUnicode_AsUTF8AndSize, HPyUni-
code_DecodeFSDefault, HPyImport_ImportModule

• Debug mode: Implemented tracking of closed handles

• Debug mode: Add hook for invalid handle access

Bug fixes:

• Distinguish between pure and legacy types

• Fix Sphinx doc errors

2.11. Changelog 113

HPy, Release 0.9

114 Chapter 2. Full table of contents:

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

115

HPy, Release 0.9

116 Chapter 3. Indices and tables

INDEX

Symbols
_HPyContext_s (C struct), 50
_HPyContext_s.abi_version (C member), 50
_HPyContext_s.h_ArithmeticError (C mem-

ber), 50
_HPyContext_s.h_AssertionError (C mem-

ber), 50
_HPyContext_s.h_AttributeError (C mem-

ber), 50
_HPyContext_s.h_BaseException (C member),

50
_HPyContext_s.h_BaseObjectType (C mem-

ber), 52
_HPyContext_s.h_BlockingIOError (C mem-

ber), 51
_HPyContext_s.h_BoolType (C member), 52
_HPyContext_s.h_BrokenPipeError (C mem-

ber), 51
_HPyContext_s.h_BufferError (C member), 50
_HPyContext_s.h_Builtins (C member), 52
_HPyContext_s.h_BytesType (C member), 52
_HPyContext_s.h_BytesWarning (C member),

52
_HPyContext_s.h_CapsuleType (C member), 52
_HPyContext_s.h_ChildProcessError (C

member), 51
_HPyContext_s.h_ComplexType (C member), 52
_HPyContext_s.h_ConnectionAbortedError

(C member), 51
_HPyContext_s.h_ConnectionError (C mem-

ber), 51
_HPyContext_s.h_ConnectionRefusedError

(C member), 51
_HPyContext_s.h_ConnectionResetError (C

member), 51
_HPyContext_s.h_DeprecationWarning (C

member), 52
_HPyContext_s.h_EOFError (C member), 50
_HPyContext_s.h_Ellipsis (C member), 50
_HPyContext_s.h_Exception (C member), 50
_HPyContext_s.h_False (C member), 50
_HPyContext_s.h_FileExistsError (C mem-

ber), 51
_HPyContext_s.h_FileNotFoundError (C

member), 51
_HPyContext_s.h_FloatType (C member), 52
_HPyContext_s.h_FloatingPointError (C

member), 50
_HPyContext_s.h_FutureWarning (C member),

52
_HPyContext_s.h_GeneratorExit (C member),

50
_HPyContext_s.h_ImportError (C member), 50
_HPyContext_s.h_ImportWarning (C member),

52
_HPyContext_s.h_IndentationError (C mem-

ber), 51
_HPyContext_s.h_IndexError (C member), 50
_HPyContext_s.h_InterruptedError (C mem-

ber), 51
_HPyContext_s.h_IsADirectoryError (C

member), 51
_HPyContext_s.h_KeyError (C member), 50
_HPyContext_s.h_KeyboardInterrupt (C

member), 51
_HPyContext_s.h_ListType (C member), 52
_HPyContext_s.h_LongType (C member), 52
_HPyContext_s.h_LookupError (C member), 50
_HPyContext_s.h_MemoryError (C member), 51
_HPyContext_s.h_MemoryViewType (C mem-

ber), 52
_HPyContext_s.h_ModuleNotFoundError (C

member), 50
_HPyContext_s.h_NameError (C member), 51
_HPyContext_s.h_None (C member), 50
_HPyContext_s.h_NotADirectoryError (C

member), 51
_HPyContext_s.h_NotImplemented (C mem-

ber), 50
_HPyContext_s.h_NotImplementedError (C

member), 51
_HPyContext_s.h_OSError (C member), 50
_HPyContext_s.h_OverflowError (C member),

51

117

HPy, Release 0.9

_HPyContext_s.h_PendingDeprecationWarning
(C member), 52

_HPyContext_s.h_PermissionError (C mem-
ber), 51

_HPyContext_s.h_ProcessLookupError (C
member), 51

_HPyContext_s.h_RecursionError (C mem-
ber), 51

_HPyContext_s.h_ReferenceError (C mem-
ber), 51

_HPyContext_s.h_ResourceWarning (C mem-
ber), 52

_HPyContext_s.h_RuntimeError (C member),
51

_HPyContext_s.h_RuntimeWarning (C mem-
ber), 52

_HPyContext_s.h_SliceType (C member), 52
_HPyContext_s.h_StopAsyncIteration (C

member), 50
_HPyContext_s.h_StopIteration (C member),

50
_HPyContext_s.h_SyntaxError (C member), 51
_HPyContext_s.h_SyntaxWarning (C member),

52
_HPyContext_s.h_SystemError (C member), 51
_HPyContext_s.h_SystemExit (C member), 51
_HPyContext_s.h_TabError (C member), 51
_HPyContext_s.h_TimeoutError (C member),

51
_HPyContext_s.h_True (C member), 50
_HPyContext_s.h_TupleType (C member), 52
_HPyContext_s.h_TypeError (C member), 51
_HPyContext_s.h_TypeType (C member), 52
_HPyContext_s.h_UnboundLocalError (C

member), 51
_HPyContext_s.h_UnicodeDecodeError (C

member), 51
_HPyContext_s.h_UnicodeEncodeError (C

member), 51
_HPyContext_s.h_UnicodeError (C member),

51
_HPyContext_s.h_UnicodeTranslateError

(C member), 51
_HPyContext_s.h_UnicodeType (C member), 52
_HPyContext_s.h_UnicodeWarning (C mem-

ber), 52
_HPyContext_s.h_UserWarning (C member), 52
_HPyContext_s.h_ValueError (C member), 51
_HPyContext_s.h_Warning (C member), 52
_HPyContext_s.h_ZeroDivisionError (C

member), 51
_HPyContext_s.name (C member), 50

C
CPython ABI, 8

H
HPy Hybrid ABI, 9
HPy Universal ABI, 9
HPy_ASCII (C function), 53
HPy_BuildValue (C function), 99
HPy_Bytes (C function), 53
HPy_Call (C function), 63
HPy_CallMethod (C function), 63
HPy_CallMethodTupleDict (C function), 108
HPy_CallMethodTupleDict_s (C function), 108
HPy_CallTupleDict (C function), 64
HPy_Compile_s (C function), 69
HPy_DelAttr (C function), 104
HPy_DelAttr_s (C function), 105
HPy_DelItem (C function), 53
HPy_DelItem_i (C function), 53
HPy_DelItem_s (C function), 53
HPY_EMBEDDED_MODULES (C macro), 58
HPy_EvalCode (C function), 69
HPy_FatalError (C function), 67
HPy_GetAttr (C function), 52
HPy_GetAttr_s (C function), 52
HPy_GetItem (C function), 52
HPy_GetItem_i (C function), 53
HPy_GetItem_s (C function), 52
HPy_HasAttr (C function), 52
HPy_HasAttr_s (C function), 52
HPy_Hash (C function), 53
HPY_INLINE_HELPERS_H (C macro), 104
HPy_Is (C function), 53
HPy_IsTrue (C function), 52
HPy_LeavePythonExecution (C function), 66
HPY_MOD_EMBEDDABLE (C macro), 58
HPy_MODINIT (C macro), 58
HPy_ReenterPythonExecution (C function), 66
HPy_Repr (C function), 53
HPy_RichCompare (C function), 53
HPy_RichCompareBool (C function), 53
HPy_SetAttr (C function), 52
HPy_SetAttr_s (C function), 52
HPy_SetCallFunction (C function), 53
HPy_SetItem (C function), 53
HPy_SetItem_i (C function), 53
HPy_SetItem_s (C function), 53
HPy_SourceKind (C enum), 69
HPy_SourceKind.HPy_SourceKind_Expr (C

enumerator), 69
HPy_SourceKind.HPy_SourceKind_File (C

enumerator), 69
HPy_SourceKind.HPy_SourceKind_Single (C

enumerator), 69

118 Index

HPy, Release 0.9

HPy_Str (C function), 53
HPy_TPFLAGS_BASETYPE (C macro), 57
HPy_TPFLAGS_DEFAULT (C macro), 57
HPy_TPFLAGS_HAVE_GC (C macro), 57
HPy_Type (C function), 53
HPy_TypeCheck (C function), 53
HPyArg_Parse (C function), 95
HPyArg_ParseKeywords (C function), 96
HPyArg_ParseKeywordsDict (C function), 97
HPyBool_FromLong (C function), 107
HPyDef (C struct), 59
HPyDef.kind (C member), 59
HPyDef_CALL_FUNCTION (C macro), 63
HPyDef_GET (C macro), 62
HPyDef_GETSET (C macro), 62
HPyDef_Kind (C enum), 59
HPyDef_Kind.HPyDef_Kind_GetSet (C enumer-

ator), 59
HPyDef_Kind.HPyDef_Kind_Member (C enumer-

ator), 59
HPyDef_Kind.HPyDef_Kind_Meth (C enumera-

tor), 59
HPyDef_Kind.HPyDef_Kind_Slot (C enumera-

tor), 59
HPyDef_MEMBER (C macro), 62
HPyDef_METH (C macro), 61
HPyDef_SET (C macro), 62
HPyDef_SLOT (C macro), 61
HPyDict_Check (C function), 65
HPyDict_Copy (C function), 66
HPyDict_Keys (C function), 65
HPyDict_New (C function), 65
HPyErr_Clear (C function), 67
HPyErr_ExceptionMatches (C function), 67
HPyErr_NewException (C function), 67
HPyErr_NewExceptionWithDoc (C function), 67
HPyErr_NoMemory (C function), 67
HPyErr_Occurred (C function), 67
HPyErr_SetFromErrno (C function), 104
HPyErr_SetFromErrnoWithFilename (C func-

tion), 66
HPyErr_SetFromErrnoWithFilenameObject

(C function), 104
HPyErr_SetFromErrnoWithFilenameObjects

(C function), 67
HPyErr_SetObject (C function), 67
HPyErr_SetString (C function), 67
HPyErr_WarnEx (C function), 67
HPyErr_WriteUnraisable (C function), 67
HPyField_Load (C function), 64
HPyField_Store (C function), 64
HPyGetSet (C struct), 61
HPyGetSet.closure (C member), 61
HPyGetSet.doc (C member), 61

HPyGetSet.getter_cpy_trampoline (C mem-
ber), 61

HPyGetSet.getter_impl (C member), 61
HPyGetSet.name (C member), 61
HPyGetSet.setter_cpy_trampoline (C mem-

ber), 61
HPyGetSet.setter_impl (C member), 61
HPyGlobal_Load (C function), 65
HPyGlobal_Store (C function), 64
HPyHelpers_AddType (C function), 102
HPyHelpers_PackArgsAndKeywords (C func-

tion), 103
HPyListBuilder_Build (C function), 68
HPyListBuilder_Cancel (C function), 68
HPyListBuilder_New (C function), 68
HPyListBuilder_Set (C function), 68
HPyLong_AsLong (C function), 105
HPyLong_AsLongLong (C function), 106
HPyLong_AsUnsignedLong (C function), 106
HPyLong_AsUnsignedLongLong (C function), 107
HPyLong_AsUnsignedLongLongMask (C func-

tion), 107
HPyLong_AsUnsignedLongMask (C function), 106
HPyLong_FromLong (C function), 105
HPyLong_FromLongLong (C function), 105
HPyLong_FromUnsignedLong (C function), 105
HPyLong_FromUnsignedLongLong (C function),

105
HPyMember (C struct), 60
HPyMember.doc (C member), 61
HPyMember.name (C member), 60
HPyMember.offset (C member), 60
HPyMember.readonly (C member), 61
HPyMember.type (C member), 60
HPyMember_FieldType (C enum), 60
HPyMember_FieldType.HPyMember_BOOL (C

enumerator), 60
HPyMember_FieldType.HPyMember_BYTE (C

enumerator), 60
HPyMember_FieldType.HPyMember_CHAR (C

enumerator), 60
HPyMember_FieldType.HPyMember_DOUBLE (C

enumerator), 60
HPyMember_FieldType.HPyMember_FLOAT (C

enumerator), 60
HPyMember_FieldType.HPyMember_HPYSSIZET

(C enumerator), 60
HPyMember_FieldType.HPyMember_INT (C enu-

merator), 60
HPyMember_FieldType.HPyMember_LONG (C

enumerator), 60
HPyMember_FieldType.HPyMember_LONGLONG

(C enumerator), 60

Index 119

HPy, Release 0.9

HPyMember_FieldType.HPyMember_NONE (C
enumerator), 60

HPyMember_FieldType.HPyMember_OBJECT (C
enumerator), 60

HPyMember_FieldType.HPyMember_OBJECT_EX
(C enumerator), 60

HPyMember_FieldType.HPyMember_SHORT (C
enumerator), 60

HPyMember_FieldType.HPyMember_STRING (C
enumerator), 60

HPyMember_FieldType.HPyMember_STRING_INPLACE
(C enumerator), 60

HPyMember_FieldType.HPyMember_UBYTE (C
enumerator), 60

HPyMember_FieldType.HPyMember_UINT (C
enumerator), 60

HPyMember_FieldType.HPyMember_ULONG (C
enumerator), 60

HPyMember_FieldType.HPyMember_ULONGLONG
(C enumerator), 60

HPyMember_FieldType.HPyMember_USHORT (C
enumerator), 60

HPyMeth (C struct), 59
HPyMeth.cpy_trampoline (C member), 60
HPyMeth.doc (C member), 60
HPyMeth.impl (C member), 59
HPyMeth.name (C member), 59
HPyMeth.signature (C member), 60
HPyModuleDef (C struct), 58
HPyModuleDef.defines (C member), 58
HPyModuleDef.doc (C member), 58
HPyModuleDef.globals (C member), 58
HPyModuleDef.legacy_methods (C member), 58
HPyModuleDef.size (C member), 58
HPySlice_AdjustIndices (C function), 107
HPySlot (C struct), 59
HPySlot.cpy_trampoline (C member), 59
HPySlot.impl (C member), 59
HPySlot.slot (C member), 59
HPyStructSequence_Desc (C struct), 101
HPyStructSequence_Desc.doc (C member), 101
HPyStructSequence_Desc.fields (C member),

101
HPyStructSequence_Desc.name (C member),

101
HPyStructSequence_Field (C struct), 101
HPyStructSequence_Field.doc (C member),

101
HPyStructSequence_Field.name (C member),

101
HPyStructSequence_New (C function), 102
HPyStructSequence_NewType (C function), 102
HPyStructSequence_UnnamedField (C var),

102

HPyTuple_Pack (C function), 104
HPyTupleBuilder_Build (C function), 68
HPyTupleBuilder_Cancel (C function), 68
HPyTupleBuilder_New (C function), 67
HPyTupleBuilder_Set (C function), 67
HPyType_BuiltinShape (C enum), 55
HPyType_BuiltinShape.HPyType_BuiltinShape_Float

(C enumerator), 55
HPyType_BuiltinShape.HPyType_BuiltinShape_Legacy

(C enumerator), 55
HPyType_BuiltinShape.HPyType_BuiltinShape_List

(C enumerator), 55
HPyType_BuiltinShape.HPyType_BuiltinShape_Long

(C enumerator), 55
HPyType_BuiltinShape.HPyType_BuiltinShape_Object

(C enumerator), 55
HPyType_BuiltinShape.HPyType_BuiltinShape_Tuple

(C enumerator), 55
HPyType_BuiltinShape.HPyType_BuiltinShape_Type

(C enumerator), 55
HPyType_BuiltinShape.HPyType_BuiltinShape_Unicode

(C enumerator), 55
HPyType_FromSpec (C function), 57
HPyType_GetName (C function), 57
HPyType_HELPERS (C macro), 56
HPyType_IsSubtype (C function), 57
HPyType_LEGACY_HELPERS (C macro), 56
HPyType_Spec (C struct), 54
HPyType_Spec.basicsize (C member), 54
HPyType_Spec.builtin_shape (C member), 54
HPyType_Spec.defines (C member), 55
HPyType_Spec.doc (C member), 55
HPyType_Spec.flags (C member), 54
HPyType_Spec.itemsize (C member), 54
HPyType_Spec.legacy_slots (C member), 54
HPyType_Spec.name (C member), 54
HPyType_SpecParam (C struct), 55
HPyType_SpecParam.kind (C member), 55
HPyType_SpecParam.object (C member), 55
HPyType_SpecParam_Kind (C enum), 56
HPyType_SpecParam_Kind.HPyType_SpecParam_Base

(C enumerator), 56
HPyType_SpecParam_Kind.HPyType_SpecParam_BasesTuple

(C enumerator), 56
HPyType_SpecParam_Kind.HPyType_SpecParam_Metaclass

(C enumerator), 56

P
Python Enhancement Proposals

PEP 3149, 8

120 Index

	Where to go next:
	Full table of contents:
	HPy Quickstart
	HPy Overview
	HPy API Introduction
	Porting Guide
	Porting Example
	Debug Mode
	Trace Mode
	API Reference
	Contributing
	Misc Notes
	Changelog

	Indices and tables
	Index

